

ANNUAL REPORT 2021 –2022

Annual Report

2021 -2022

Contents

A.	Organization & Management	4
Ge	eneral	4
Mi	ission	4
Stı	udy programs offered by Department	5
В.	Resources	10
Fina	ınce	15
IT	Resources, Physical Infrastructure and Library Resources	15
C.	The Curriculum	16
Gr	raduate Teaching	19
D.	. Teaching, Learning, Assessment & Research	35
Gr	raduate Students' List of Theses	36
Re	esearch Areas and Research Groups	36
Lis	st of Publications	41
Pa	articipation of Academic Staff in Academic Events	44
Pro	ojects	44
E.	Support, Resources & Representation	45
Pa	articipation in Academic Events	45
Stı	udent Best Success Stories	47
Of	ffice Holders	47
Δ.	cknowledgements	48

A. Organization & Management

Introduction

General

Civil Engineering covers a wide range of engineering applications from dams, tunnels, pipelines and highways to buildings. Civil Engineering is distinguished as being one of the earliest engineering disciplines. Throughout the ages it has provided creative and feasible solutions to many of the basic human needs and problems, and it still continues to take pride in being a fundamental building block of civilization

Mission

Understanding of the fundamentals of science and engineering so that they can develop solutions to Civil Engineering problems and enhance their computing, communication, and research skills. It is aimed to especially emphasize teamwork, independent and innovative thinking and leadership qualities. In particular, the Civil Engineering Program aims to:

- Train the students to have theoretical background in basic sciences and engineering and to be equipped with necessary technical skills,
- Develop students' competency in reading, writing and oral communication,
- Provide practical experience which will enable students to utilize and enhance their engineering knowledge,
- Promote students' self-discipline and self-assurance and the ability to learn on their own,
- Encourage teamwork, collaboration and development of interpersonal skills,
- Motivate the students towards contributing to the progress of science and technology,
- Teach the importance of ethical behavior in social and professional life,
- Produce graduates for the engineering and the business communities who are observant, inquisitive and open to new technologies for developing better solutions,
- Produce graduates for the engineering and business communities with integrity, determination, judgment, motivation, ability and education to assume a leadership role to meet the demanding challenges of the society.

Study programs offered by the Department

1. The Bachelor

The Bachelor Program in Civil Engineering is composed of three years of full-time academic study.

The first year of the degree program present a broad, practical overview of the field of Civil Engineering. During this first year, presentation of the course material is primarily delivered at a foundational level with engineering fundamentals stressed and reinforced across the curriculum. A strong understanding of practical and physical principles is fostered and promoted, and an abundance of learning opportunities is provided to apply these fundamentals to the solution of real-world design scenarios that would be encountered by both technologists and engineers. Throughout the program, opportunities are presented to students to strengthen their graphical, written, and oral communication skills. A significant amount of time is directly related to hands-on training in material testing, surveying, manual and computer-aided drafting, and instruction in the use of engineering software tools.

The second and third year are mainly composed of basic engineering courses involving the study and application of the principles of geotechnical engineering (behavior of soils, design of foundations), structural engineering (analysis and design of reinforced concrete and steel structures), hydraulics engineering (flow of water in pipes, open channels, water resources), and the general systems approach to engineering problems. The final two years of the degree program are academically rigorous, with thorough investigation of the theoretical foundations of civil engineering science and design topics. At the same time, the practical application of civil engineering knowledge is presented and applied through course assignments and project work. Additionally, the student is challenged to view the engineer's role from an interdisciplinary and multidisciplinary perspective. The role of the engineer as a manager is also developed. In the final two years of the program, the student's educational experience is enriched through a series of liberal studies courses. To further develop engineering skills for professional practice, the degree concludes with the completion of a summer practice.

In the second semester of third year, students whose GPA is higher than 3.0 have the chance to choose between Graduation Project or Final Comprehensive Exam. Students whose GPA is below 3.0 are obliged to enter the Final Comprehensive Exam.

2. Professional Master

The Professional Master of CE Program offers a year of advanced study for graduate students with previous professional degrees in Civil Engineering (or equivalent with a strong knowledge background). This Professional Master's degree program is an interdisciplinary program of study with a concentrated time for completion. The program is intended for qualified students who already have professional work experience. Students without professional experience after completion of the professional degree may be admitted, depending on the quality of their work. Students must demonstrate evidence of high-quality work and potential for development based on their grade-point average, letters of recommendation. Classes generally take place in the evenings (5:15 pm – 8.00 pm). The program's goals are to further train professionals in civil engineering who are able to work effectively in teams across a large range of scales and with a well-developed knowledge. The program offers a unique blend of courses in different areas. Students will share working methods, acquire additional skills, and explore new avenues of professional development under the supervision of an interdisciplinary group of faculty members in the Department of Civil Engineering at EPOKA University.

Curriculum

The Professional Master's degree combines a core curriculum with the opportunity to take elective courses tailored to a student's particular areas of interest. These courses typically relate to the student's field of interest and are selected by the student in consultation with the department advisor. To earn the Professional Master's degree, students must complete one year in residence, 60 ECTS credits of coursework, and the core curriculum.

Course Structure

The program is taught in English. Therefore, Albanian and international applicants from countries in which the official language is not English are required to submit official evidence of English language proficiency.

3. Master of Science

Our practice-oriented Master of Science in Civil Engineering (MSc) program builds upon an undergraduate education and facilitates more advanced study in one of the branches of civil engineering. The program consists of 120 ECTS, and all graduate courses are offered in the late afternoon or evening.

Mission Statement

The Master of Science in Civil Engineering (MSc) program is intended to serve graduate students who have a Bachelor on Civil Engineering or closely related undergraduate degree in order to strengthen their knowledge and understanding of civil engineering principles and practices. The program is primarily intended for students who currently are, or intend to become, practicing civil engineers, and thus focuses on the application of these principles and practices to real-world problems encountered by professional civil engineers.

Another purpose of the program is to facilitate applied research on relevant civil engineering topics. Such research should 1) serve societal needs by addressing contemporary issues, 2) contribute to the professional development of both students and faculty and 3) provide preparation for further academic study and research for those students who wish to pursue a Ph.D.

Educational Objectives

Graduates of the MSc program should have:

- 1. A knowledge of engineering principles sufficient to understand the bases and applicability of standard analysis, design, and implementation practices within their emphasis area.
- 2. The ability to conduct engineering analyses and to develop and implement designs and problem solutions that conform to applicable codes and standards of practice.
- 3. An understanding of the various technical and non-technical factors that impact the feasibility and implementation of civil engineering projects, including: technical feasibility, multi-party involvement, environmental assessment, financial/economic planning, owner/public works administration, owners' strategic plans, and socioeconomic/equity issues.
- 4. The foundation needed to develop engineering judgment via professional practice, and to effectively identify, consider, and account for multiple and competing objectives.
- 5. The technical knowledge and skills needed to pursue lifelong learning with the ability to independently extend personal knowledge and understanding of engineering topics and practices by conducting literature searches, consulting with others, and using other similar techniques.
- 6. Knowledge and skills necessary to pass specialty license examinations in their respective emphasis areas.

Curriculum

The Master of Science in Civil Engineering offers to the students the possibility of specializing into four profiles such as: Structural Engineering, Construction Management, Construction Materials and Water Resources Engineering. It combines a core curriculum with the opportunity to take elective courses tailored to a student's particular areas of interest. These courses typically relate to the student's thesis topic and are selected by the student in consultation with department advisor. To earn the MSc degree, students must complete in total 120 ECTS credits from their coursework and a Master thesis.

Curriculum:

Structural Engineering

Construction Management

Construction Materials

Water Resources Engineering

Course Structure

The program is taught in English. Therefore, Albanian and international applicants from countries in which the official language is not English are required to submit official evidence of English language proficiency.

Master Thesis

Thesis topics are developed individually by the student in consultation with department advisor. To prepare for their thesis research and writing, students must complete a course that offers instruction in research methods and academic writing. Thesis committees consist of three members, usually department members of Civil Engineer at EPOKA University. Students can also invite an outside reader to partake in the thesis committee.

A preliminary thesis proposal is prepared during the fall semester and presented to the department after the winter break. The thesis project is substantially developed during the spring semester in close collaboration with the academic advisor. The thesis is typically finalized during the summer and formally

presented in front of the jury. (Although MSc students are strongly encouraged to complete their written thesis during the summer, students have the option of going on filing fee for an extra semester and finalizing their written thesis during the fall semester.)

4. PhD (Doctorate)

The objective of the doctoral study program is the advancement of analytical and/or experimental knowledge through a combination of specialized courses and a research thesis under the supervision of an experienced researcher forms the main component of the doctoral programs. Where possible, research of interest to industry is encouraged. CE-PhD Program in Civil Engineering is necessary for the formation of academicians in various fields of research in Civil Engineering. Program also gives opportunity to qualified students from various academic disciplines for further education at an advanced level in Civil Engineering. The PhD study program for full-time students lasts for a minimum of six semesters (three academic years), up to a maximum of eight semesters (four academic years) and for part-time students, it lasts for a minimum of six semesters (three academic years), up to a maximum of twelve semesters (six academic years). The first year is devoted to the core courses. Formal work on the dissertation begins in the second year; students are encouraged to get the start on their thesis by research and writing.

B. Resources

Department Staff

Dr. Erion Luga is the Director of the Center of Research and Design in Applied Sciences at EPOKA University and a Lecturer in the Department of Civil Engineering. He got his integrated diploma in Civil Engineering in February 2009 from the Civil Engineering Department at the Polytechnic University of Tirana, then completed his Master of Second Level in February 2011 at EPOKA University in the subdiscipline of Construction Materials. In February 2015 he completed the PhD studies in the same field at Erciyes University/Turkey. His current research focuses on recycling of industrial by-products in construction materials, mainly in concrete, sustainability and optimization in their production etc. During his PhD studies Mr. Luga has also worked in the investigation of several structures and materials in the region of Kayseri, Turkey. During his research he has been dealing with the design of different materials to be introduced in the construction sector. Regarding his lecturing experience, he has been teaching courses such as: General Chemistry, Materials Science, Introduction to Construction Materials, Properties of Fresh & Hardened Concrete, Durability of Concrete, Special Concretes, Supplementary Cementing Materials and Advanced Concrete Technology. On the other hand, Dr. Luga has several journal publications in indexed journals also he has participated in different conferences related to concrete and construction materials. He has also supervised some very successful Master thesis.

He is also the Head of Department of Civil Engineering.

Prof. Dr. Hüseyin Bilgin in the Civil Engineering Department at EPOKA University, Tirana Albania. He is actively taking part in teaching, research, and the practice of structural and earthquake engineering, with emphasis on the response, analysis and design of reinforced concrete and masonry structures. He teaches the compulsory core courses Engineering Mechanics and Mechanics of Materials for second-year students and, he is the coordinator of the elective courses Introduction to Structural Dynamics,

Supervised Independent Study and Research, and Introduction to Earthquake Resistant Design in the 7th and 8th semesters of the area of structural engineering specialization. He also teaches the graduate courses

Structural Dynamics and Earthquake Engineering.

His main research interests are related to the response of structures to extreme loads focusing on the areas of structural and earthquake engineering with the emphasis on problems of non-linearity and performance evaluation of members, connections, and structures.

He has been involved in several research projects in these areas and has worked as an expert consultant on numerous engineering projects mostly made of reinforced concrete, but also of other structural materials. He has also participated in various national and international scientific activities related to structural and earthquake engineering.

He has supervised PhD, MSc and undergraduate students studying in the above fields.

Assoc Prof. Dr. Miriam Ndini. She is an Associated Professor in the Department of Civil Engineering at EPOKA University. Her research and teaching focuses on water, she is a hydrologist.

With a background in Civil Engineering- Hydraulics, she has been working as a researcher on the field of Hydrology. This work consists on estimation the water resources in the watershed, evaluating the flow parameters, measuring the data from the hydrologic network, elaboration and analyzing them.

Actively she is involved in projects dealing with effects of climate changes on water resources and its impact on different sectors.

All through research, she is involved in teaching. From the year 2000 she is teaching on the courses as Fluid Mechanics; River Mechanics; Water Resources Engineering and Hydrology.

Dr. Julinda Keçi is a faculty member of the Civil Engineering Department at EPOKA University, Albania. She has a Master of Science degree in Structural Engineering from Polytechnic University of Tirana, and a PhD in Civil Engineering, specializing in Construction Management. Her research interests include construction management and technology, project planning, risk management, and economic assessment of engineering projects. One of the primary foci of her work is the implementation of sustainable methods in projects management and building performance. She was involved in international projects and in the organization of several international Civil Engineering conferences. She has published works on risk management, construction management, project planning, building optimization through geotechnical and earthquake design, etc.

Dr. Enea Mustafaraj is a full-time lecturer at the Department of Civil Engineering at EPOKA University. He has actively been taking part in teaching of fundamental courses related to reinforced concrete design and the fundamentals of steel design, as well as analysis of structures in bachelor and master level. He has also supervised bachelor and master students. His research activities are related to structural assessment of structures, mainly the historical ones, improvement of the performance of existing URM buildings using various retrofitting techniques. He completed his master studies in June

2012 with my thesis entitled "A Case Study of Structural Assessment of Five Ottoman Mosques in Albania". He was awarded the PhD degree in June 2016, with a dissertation entitled "External Shear Strengthening of Unreinforced Damaged Masonry Walls". During the last years, he has been studying structural performance of unreinforced, reinforced and damaged masonry walls subjected to diagonal compression (as of ASTM E-519-04). Dr. Mustafaraj has participated in national and international projects, conferences and workshops, and is author of more than 19 publications.

MSc. Armando Demaj is a full-time assistant lecturer at the Department of Civil Engineering at EPOKA University. He holds a degree in Master of Second Level in Civil Engineering (Structural Engineering). He has been teaching in: Introduction to Computers and C Programming, Foundation Engineering, Soil Mechanics, Structural Analysis, Structural Mechanics etc. Moreover, he has been involved in several activities such as: Open Forums, Workshops, Site Visits, Laboratory experiments organized at EPOKA University during 2019-2020 academic year. He owns good command of English, different Programming Languages, SAP2000, Etabs, Zeus NL, Perform 3D, Microsoft Office, Google sheet, Matlab, USEE, Nonlin, Photoshop, Illustrator etc.

MSc. Marsed Leti is a Assistant Lecturer in Civil Engineering Department at EPOKA University, Tirana, Albania. He holds a Master of Science degree in Structural Engineering from EPOKA University therefore his main research interests are related to the response of reinforced concrete structures under static and dynamic loading conditions conducted mainly by the non-linear analysis methods. He is dynamically taking part in teaching, research and student activities since 2014-2015 academic year. He has been teaching and assisting in: Civil Engineering Drawing, Engineering Mechanics I, Mechanics of Materials, Statics and Strength of Materials and Structural Mechanics. Moreover, he has been involved in several activities such as: Open Forums, Workshops, Site Visits, Laboratory experiments etc. organized at EPOKA University during 2014-2019 academic years. He owns good command of English, Civil Engineering, AutoCAD, SAP2000, Etabs, Zeus NL, Perform 3D, Stereo Statika, Microsoft Office, Google sheet, Matlab, USEE, Nonlin, Photoshop, Illustrator, After effects etc.

MSc. Margarita Dajko- Assistant Lecturer in Civil Engineering Department at EPOKA University, Tirana, Albania. She holds a Master of Science degree in Structural Engineering from EPOKA University. She has been teaching in courses: Engineering Mechanics II, Soil Mechanics, Foundation Engineering, Final Comprehensive Exam etc.

Part time Academic Staff

Prof. Dr. Ylber Muçeku MSc. Erion Periku MSc. Izet Mehmetaj

Academic Visitors (2021-2022)

Mr. Marsed Leti was awarded the degree "PhD" in Civil Engineering

On September 22, 2022, Mr. Marsed Leti, PhD student and Lecturer at the Department of Civil Engineering of Epoka University has successfully defended his PhD dissertation entitled "SEISMIC PERFORMANCE EVALUATION OF RESIDENTIAL RC TEMPLATE BUILDINGS USING NON-LINEAR ANALYSES PROCEDURES". Mr. Leti is the third PhD student graduated from the department of Civil Engineering.

The Jury of the PhD Defense was composed of Distinguished Professors in this field in Albania and Kosovo:

Assoc. Prof. Dr. Neritan Shkodrani (Chairperson)

Prof. Dr. Naser Kabashi (Opponent)

Assoc. Prof. Dr. Igli Kondi (Opponent)

Prof. Dr. Ahmet Öztaş

Prof. Dr. Niko Pojani

Exhibitions of the Largest Dams in Albania.

On 22 November 2021, the Department of Civil Engineering in Epoka University, in a collaboration with the Albanian National Committee of Large Dams, organized the Exhibitions of the Largest Dams in Albania.

Albanian National Committee of Large Dams is the body of Council of Ministers, which exercises state control on dam safety as objects of special importance and represent the Albanian state in the International Commission of Large Dams.

The representatives held a presentation showing the most important dams and reservoirs in Albania. The pictures were exposed in the halls of Epoka University and the students had the possibility to view them and learn more details regarding the location of all dams in Albania, their heights and their capacities.

Administrative Staff

Amelia Bullari holds a Bachelor's degree in Business Informatics and a Master of Science degree in Business Administration, Faculty of Economics and Administrative Sciences, EPOKA University. She has been the Coordinator of Civil Engineering the last three years.

Finance

IT Resources, Physical Infrastructure and Library Resources

C. The Curriculum

Undergraduate Teaching

	Faculty of Architecture	and Engin	eering												
Г	Department of Civil Engineering	and Engin	eering												
	FIRST YEAR First Semester														
COUR		Course	Compulsory	11	eekly	Com	ws.o.	Epo	Son	octual	Loot	ure and	d studi	ing	ECT
COUN	ASES	Type	/Elective		eekiy Distril			ka ka	Sell	iestrai		ure and urs	u stuu <u>y</u>	ying	S
Code	Course Name			The ory	Pra ct.	L ab	Tota 1	Cred its	Lec t.	Pra ct.	La b.	Site W.	Oth er	Tot al	
MTH 101	Calculus I	A	Compulsory	3	2	0	5	4	48	32	0	0	95	175	7
PHY 101	General Physics I	A	Compulsory	3	2	0	5	4	48	32	0	0	95	175	7
CHM 103	General Chemistry	A	Compulsory	3	0	0	3	3	48	0	0	0	52	100	4
CE 101	Introduction to Civil Engineering	В	Compulsory	2	0	0	2	2	32	0	0	35	33	100	4
CE 121	Civil Engineering Drawing	В	Compulsory	2	2	0	4	3	32	32	0	0	36	100	4
ENG 103	Development of Reading and Writing Skills in English I	D	Compulsory	3	0	0	3	3	48	0	0	0	52	100	4
Semest	tral Total			16	6	0	22	19	256	96	0	35	363	750	30
	FIRST YEAR														
	Second Semester														
COUR		Course Type	Compulsory /Elective		eekly Distril		1	Epo ka	Se			rse and			ECT S
Code	Course Name			The ory	Pra ct.	L ab	Tota 1	Cred its	Lec t.	Pra ct.	La b.	Site W.	Oth er	Tot al	
CE 132	Engineering Mechanics I	В	Compulsory	2	2	0	4	3	32	32	0	10	76	150	6
CE 122	Materials Science	С	Compulsory	2	2	0	4	3	32	32	0	10	26	100	4
MTH 102	Calculus II	A	Compulsory	3	2	0	5	4	48	32	0	0	95	175	7
ENG 104	Development of Reading and Writing Skills in English II	D	Compulsory	3	0	0	3	3	48	0	0	0	52	100	4

CEN 104	Introduction to Computers and Programming	D	Compulsory	2	2	0	4	3	32	32	0	0	61	125	5
CE 104	Geology for Civil Engineers	С	Compulsory	3	0	0	3	3	48	0	0	32	20	100	4
	ral Total			15	8	0	23	19	240	128	0	52	330	750	30
	SECOND YEAR														
	Third Semester														
COUR	SES	Course Type	Compulsory /Elective	V	Veekly Distril			Epo ka	Se	mestral		ure and	study	ing	ECT S
Code	Course Name	1 9 9 0	/ Elective	The	Pra	L	Tota	Cred	Lec	Pra	La	Site	Oth	Tot	- D
00.00				ory	ct.	ab	1	its	t.	ct.	b.	W.	er	al	
MTH 201	Differential Equations	A	Compulsory	3	0	0	3	3	48	0	0	0	77	125	5
CE 223	Introduction to Construction Materials	В	Compulsory	3	0	2	5	4	48	0	32	45	50	175	7
CE 213	Mechanics of Materials I	В	Compulsory	2	2	0	4	3	32	32	10	0	101	175	7
MTH 205	Probability and Statistics for Engineers	A	Compulsory	2	2	0	4	3	32	32	0	0	61	125	5
CE 233	Engineering Mechanics II	В	Compulsory	2	2	0	4	3	32	32	0	0	86	150	6
Semest	ral Total			12	6	2	20	16	192	96	42	45	375	750	30
	SECOND YEAR														
	Fourth Semester														
COUR	SES	Course Type	Compulsory /Elective	V	Veekly Distril			Epo ka	Se	mestra		rse and	studyi	ng	ECT S
Code	Course Name			The ory	Pra ct.	L ab	Tota 1	Cred its	Lec t.	Pra ct.	La b.	Site W.	Oth er	Tot al	
	*Elective	С	Elective	3	0	0	3	3	48	0	0	0	77	125	5
CE 214	Mechanics of Materials	В	Compulsory	2	2	0	4	3	32	32	0	0	86	150	6
CE 240	Engineering Hydrology	В	Compulsory	2	2	0	4	3	32	32	0	36	0	100	4
CE 260	Structural Mechanics	В	Compulsory	3	2	0	5	4	48	32	0	20	50	150	6
CE 284	Surveying	С	Compulsory	2	2	0	4	3	32	32	0	36	25	125	5
	Non-technical elective	С	Elective	3	0	0	3	3	48	0	0	0	52	100	4
Semest	ral Total			15	8	0	23	19	240	128	0	92	290	750	30
	THIRD YEAR														
COLID	Fifth Semester	Caura	Compulsory	77	Veekly	Can	****	Eno	Car	na a atmal	LLast	ure and	l atradad		ECT
COUR		Course Type	/Elective		Distri	bution	n	Epo ka			ho	urs			S
Code	Course Name			The ory	Pra ct.	L ab	Tota 1	Cred its	Lec t.	Pra ct.	La b.	Site W.	Oth er	Tot al	
CE 301	Summer Practise I	D	Compulsory	0	0	0	0	0	0	0	0	70	5	75	3

CE 311	Engineering Economics	С	Compulsory	2	2	0	4	3	32	32	0	0	61	125	5
CE 381	Principles of Transportation and Traffic Engineering	В	Compulsory	3	2	0	5	3	48	32	0	10	60	150	6
CE 395	Structural Analysis	В	Compulsory	3	0	2	5	4	48	0	32	30	40	150	6
CE 361	Soil Mechanics	В	Compulsory	3	1	1	5	4	48	16	16	20	25	125	5
CE 341	Fluid Mechanics	В	Compulsory	2	2	0	4	3	32	32	0	32	29	125	5
Semest	tral Total			13	7	3	23	17	208	112	48	162	220	750	30

	THIRD YEAR														
	Sixth Semester														
COUR	SES	Course Type	Compulsory /Elective		Veekly Distrib			Epo ka	Se	mestra		rse and	studyi	ng	ECT S
Code	Course Name			The ory	Pra ct.	L ab	Tota 1	Cred its	Lec t.	Pra ct.	La b.	Site W.	Oth er	Tot al	
CE 332	Reinforced Concrete Fundamentals	В	Compulsory	3	2	0	5	4	48	32	0	20	25	125	5
CE 322	Construction Engineering and Management	В	Compulsory	3	2	0	5	4	48	32	0	20	25	125	5
CE 382	Foundation Engineering	В	Compulsory	2	2	0	4	3	32	32	0	36	25	125	5
CE 326	Hydromechanics	В	Compulsory	3	2	0	5	4	48	32	0	20	25	125	5
CE 348	Fundamentals of Steel Design	В	Compulsory	2	2	0	4	3	32	32	0	36	25	125	5
CE 388	Graduation Project	Е	Compulsory	0	0	0	0	0	16	59	0	0	50	125	5
CE 366	Final Comprehensive Exam	Е	Compulsory	0	0	0	0	0	16	0	0	0	109	125	
Semest	ral Total			13	10	0	23	18	240	219	0	132	284	875	30

Graduate Teaching

1. Structural Engineering Curricula

FIRST	YEAR								
First S	emester								
COURS	SES	Course	Compulsory	Weekly Course	Distribut	ion		Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 423	Project Planning	В	Compulsory	2	2	0	4	3	7.5
CE 435	Reinforced Concrete Structures	В	Compulsory	2	2	0	4	3	7.5
CE 548	Intermediate Structural Dynamics	В	Compulsory	2	2	0	4	3	7.5
CE XXX	Technical Elective	С	Elective	2	2	0	4	3	7.5
Semest	ral Total			8	8	0	16	12	128
					•		•		
Second	d Semester								
COURS	SES	Course	Compulsory	Weekly Course	Distribut	ion		Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 442	Advanced Numerical Methods	A	Compulsory	2	2	0	4	3	7.5
CE 454	Advanced Construction Materials	В	Compulsory	2	0	2	4	3	7.5
CE 555	Earthquake Resistant Design of Structure	В	Compulsory	2	2	0	4	3	7.5
CE 562	Computer Application in Civil Engineering	В	Compulsory	2	0	2	4	3	7.5
Semest	ral Total	•	•	8	4	4	8	12	30
				1	l		1		
SECO	ND YEAR								
Third S	Semester								
COURS	SES	Course	Compulsory	Weekly Course	Distribut	ion		Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
	1	1	•	i e	1		i		

CE 503	Research Methods	В	Compulsory	2	2	0	4	3	7.5
303	Technical Elective	С	Elective	2	2	0	4	3	7.5
CE 507	Supervised Independent Study and Research	В	Compulsory	4	2	2	8	6	15
Semest	ral Total	l .		8	6	2	16	12	30
					I	1	1	1	1
Fourt	h Semester								
COUR		Course	Compulsory	Weekly Course	Distribut	ion		Epoka	ECTS
Code	Course Name	Type	/Elective		Pract.	Lab.	Total	Credits	LCIS
			G 1	Theory					20
CE 500	Master Thesis	Е	Compulsory	0	0	0	0	0	30
Semest	ral Total			0	0	0	0	0	30
		Weekly	Course Distrib	ition	•	Epoka	ECTS		
	Electives	Theory	Pract.	Lab.	Total	Credits	1		
CE 584	Admixtures for Concrete	2	2	0	4	3	7,5		
CE 543	Advanced Concrete Technology	2	2	0	4	3	7,5		
CE 540	Advanced Materials Science	2	2	0	4	3	7,5		
CE 591	Advanced Structural Analysis	2	2	0	4	3	7,5		
CE 419	Building Construction Estimating	2	2	0	4	3	7,5		
CE 538	Composite Materials	2	2	0	4	3	7,5		
CE 437	Computational Fluid Dynamics	2	2	0	4	3	7,5		
CE 443	Construction Contracts	2	2	0	4	3	7,5		
CE 417	Construction Site Techniques	2	2	0	4	3	7,5		
CE 459	Durability of Concrete	2	0	2	4	3	7,5		
CE 484	Earthquake Disaster Mitigation	2	2	0	4	3	7,5		
CE 449	Economics of Sustainability	2	2	0	4	3	7,5		
CE 463	Fundamentals of River Engineering	2	2	0	4	3	7,5		
CE 451	Groundwater Engineering	2	2	0	4	3	7,5		
CE 478	Hydraulic Structures	2	2	0	4	3	7,5		

CE	Intermediate	2	2	0	4	3	7,5	
464	Fluid Mechanics	2	2	0	4	3	7,3	
CEN	Introduction to	2	2	0	4	3	7,5	
436	Remote Sensing							
	for Earth							
A D CIT	Observation	2		2	4	2	7.5	
ARCH	Landscape	2	0	2	4	3	7,5	
451	Perspectives in DRM & FS							
CE	Legal Aspects	2	2	0	4	3	7,5	
413	In Construction	2	2		-	3	7,5	
413	Works							
CE	Life Cycle	2	2	0	4	3	7,5	
469	Assesment -	-			'		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Sustainable							
	Construction							
CE	Masonry	2	2	0	4	3	7,5	
587	Structures	ļ						
CE	Materials	2	2	0	4	3	7,5	
544	Testing and							
GE.	Measurements	2				2	7.5	
CE	Modeling In	2	2	0	4	3	7,5	
520	Hydrology Risk	2	2	0	1	2	7.5	
CE 416	Management in	2	2	0	4	3	7,5	
410	Construction							
CE	River	2	2	0	4	3	7,5	
455	Engineering	2			-		7,5	
CE	Soil	2	0	2	4	3	7.5	
533	Improvement							
	Techniques							
CE	Soil Structure	2	2	0	4	3	7.5	
532	Interaction							
CE	Special	2	0	2	4	3	7,5	
549	Concretes				.			1
CE	Statistical	2	2	0	4	3	7,5	
452	Techniques In	1						
CE	Hydrology		2		1	2	7.5	-
CE 547	Supplementary Cementing	2	2	0	4	3	7,5	
34/	Materials	1						
CE	Water	2	2	0	4	3	7,5	<u> </u>
526	Resources	-	-		'		,,5	
	Engineering							
CE	Admixtures for	2	2	0	4	3	7,5	
584	Concrete	1			[
CE	Advanced	2	2	0	4	3	7,5	
543	Concrete	1			[
	Technology							

2. Construction Management Curricula

COURS	SES	Course	Compulsory	Weekly	Course 1	Distributio	on	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 423	Project Planning	В	Compulsory	2	2	0	4	3	7.5
CE 435	Reinforced Concrete Structures	В	Compulsory	2	2	0	4	3	7.5
CE 419	Building Construction Estimateing	В	Compulsory	2	2	0	4	3	7.5
	Technical Elective	С	Elective	2	2	0	4	3	7.5
Semestr	ral Total			8	8	0	16	12	30
Second	d Semester				_	1 -	1		
COURS	SES	Course	Compulsory	Weekly	Course 1	Distributio	on	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 442	Advanced Numerical Methods	A	Compulsory	2	2	0	4	3	7.5
CE 454	Advanced Construction Materials	В	Compulsory	2	0	2	4	3	7.5
CE 416	Risk Management in Construction	В	Compulsory	2	2	0	4	3	7.5
CE 562	Computer Application in Civil Engineering	В	Compulsory	2	0	2	4	3	7.5
Semestr	ral Total			8	4	4	16	12	30
SECON	ND YEAR			•	II.	•	· •	•	
Third S	Semester								
COURS	SES	Course	Compulsory	Weekly	Course l	Distributio	on	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 503	Research Methods	В	Compulsory	2	2	0	4	3	7.5
	Technical Elective	C	Elective	2	2	0	4	3	7.5
CE 507	Supervised Independent Study and Research	В	Compulsory	4	2	2	8	6	15
Semestr	ral Total			8	6	2	16	12	30
				l.	ı		1	1	
Fourth	1 Semester								
COURS	SES	Course	Compulsory	Weekly	Course l	Distributio	on	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 500	Master Thesis	Е	Compulsory	0	0	0	0	0	30
	ral Total			0	0	0	0	0	30
		Weekly	L Course Distribi	ıtion	<u> </u>	Epoka	ECTS		
	Electives	Theory	Pract.	Lab.	Total	Credits			
CE 584	Admixtures for Concrete	2	2	0	4	3	7.5		
CE 543	Advanced Concrete Technology	2	2	0	4	3	7.5		
CE 540	Advanced Materials Science	2	2	0	4	3	7.5		

CE	Advanced Structural	2	2	0	4	3	7.5		
591	Analysis			Ů	'	3	7.5		
CE 538	Composite Materials	2	2	0	4				
CE 443	Construction Contracts	2	2	0	4				
CE 417	Construction Site Techniques	2				2	0	4	
CE 459	Durability of Concrete	2	0	2	4	3			
CE 484	Earthquake Disaster Mitigation	2	2	0	3	3	7,5		
CE 555	Earthquake Resistant Design of Structure	2	2	0	4	3	7,5		
CE 449	Economy of Sustainability in Construction	2	2	0	4	3	7,5		
CE 463	Fundamentals of River Engineering	2	2	0	4	3	7,5		
CE 476	Hydraulic Structures I	2	2	0	4	3	7,5		
CE 477	Hydraulic Structures II	2	2	0	4	3	7,5		
CE 548	Intermediate Structural Dynamics	2	2	0	4	3	7,5		
CEN 436	Introduction to Remote Sensing for Earth Observation	2	2	0	3	3	7,5		
ARC H 451	Landscape Perspectives in DRM & FS	2	0	2	4	3	7,5		
CE 413	Legal Aspects In Construction Works	2	2	0	4	3	7,5		
CE 469	Life Cycle Assesment- Sustainable Construction	2	2	0	4	3	7,5		
CE 587	Masonry Structures	2	2	0	4	3	7,5		
CE 544	Materials Testing and Measurements	2	2	0	4	3	7,5		
CE 455	River Engineering	2	2	0	4	3	7,5		
CE 473	River Hydraulics	2	2	0	4	3	7.5		
CE 533	Soil Improvement Techniques	2	0	2	4	3	7.5		
CE 532	Soil Structure Interaction	2	2	0	4	3	7.5		
CE 549	Special Concretes	2	0	2	4	3	7.5		
CE 452	Statistical Techniques in Hydrology	2	2	0	4	3	7.5		
CE 547	Supplementary Cementing Materials	2	2	0	4	3			
CE	Waste Water Treatment Plants	2	2	0	4	3	7,5		

CE	Water Resources	2	2	0	4	3	7,5	
526	Engineering							
CE	Water Supply System	2	2	0	4	3	7,5	
483								
CE	Admixtures for	2	2	0	4	3	7,5	
584	Concrete							
CE	Advanced Concrete	2	2	0	4	3	7,5	
543	Technology							
CE	Advanced Materials	2	2	0	4	3	7,5	
540	Science							

3. Water Resources Profile Curricula:

COURS	SES	Course	Compulsory	Weekly	Course I	Distributio	on	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 423	Project Planning	В	Compulsory	2	2	0	4	3	7.5
CE 435	Reinforced Concrete Structures	В	Compulsory	2	2	0	4	3	7.5
CE 452	Statistical Techniques in Hydrology	В	Compulsory	2	2	0	4	3	7.5
CE	Technical Elective	С	Elective	2	2	0	4	3	7.5
Semest	ral Total			8	8	0	16	12	30
Second	d Semester								
COURS	SES	Course	Compulsory	Weekly	Course I	Distributio	on	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 442	Advanced Numerical Methods	A	Compulsory	2	2	0	4	3	7.5
CE 454	Advanced Construction Materials	В	Compulsory	2	0	2	4	3	7.5
CE 463	Fundamentals of River Engineering	В	Compulsory	2	2	0	4	3	7.5
CE 562	Computer Application in Civil Engineering	В	Compulsory	2	0	2	4	3	7.5
Semest	ral Total			8	4	4	16	8	30
SECO	ND YEAR								
	Semester	T		1				Т .	T
COURS		Course	Compulsory /Elective			Distributio	,	Epoka	ECTS
Code	Course Name	Туре		Theory	Pract.	Lab.	Total	Credits	
CE 503	Research Methods	В	Compulsory	2	2	0	4	3	7.5
CE	Technical Elective	С	Elective	2	2	0	4	3	7.5
CE 507	Supervised Independent Study and Research	В	Compulsory	4	2	2	8	6	15
Semest	ral Total		l .	8	6	2	16	12	30
							1	1	I
Fourth	h Semester								
COURS	SES	Course	Compulsory	Weekly	Course I	Distributio	on	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 500	Master Thesis	Е	Compulsory	0	0	0	0	0	30
	ral Total	1	<u>.</u>	0	0	0	0	0	30
	Electives	Weekly	Course Distrib	ution		Epoka	ECTS		

		Theory	Pract.	Lab.	Total	Credits			
CE	Admixtures for	2	2	0	4	3			
584	Concrete								
CE	Advanced Concrete	2	2	0	4	3	7.5		
543	Technology				1				
CE	Advanced Materials	2	2	0	4	3	7.5		
540 CE	Science Advanced Structural	2	2	0	4	3	7.5		
591	Analysis	2	2	0	4	3	7.3		
CE	Building Construction	2	2	0	4	3	7.5		
419	Estimating								
CE 538	Composite Materials	2	2	0	4	3	7.5		
CE	Computational Fluid	2	2	0	4	3	7.5		
525	Dynamics								
CE	Construction Contracts	2	2	0	4	3	7.5		
443	a · · · · · · · · · · ·	2			1				
CE 417	Construction Site Techniques	2	2	0	4	3	7.5		
CE	Durability of Concrete	2	0	2	4	3			
459	Duraomity of College		0		-	3			
CE	Earthquake Disaster	2	2	0	4	3			
484	Mitigation								
CE	Earthquake Resistant	2				2	0	4	3
555	Design of Structures								
CE	Economics of	2	2	0	4	3			
449	Sustainability	2	2		1	2	7.5		
CE 463	Fundamentals of River Engineering	2	2	0	4	3	7,5		
CE	Groundwater	2	2	0	4	3	7,5		
451	Engineering	2			-		7,5		
CE	Hydraulic Structures	2	2	0	4	3	7,5		
478	-								
CE	Hydraulic Structures I	2	2	0	4	3	7,5		
476	T 1 1 0 T	2	2		1				
CE	Hydraulic Structures II	2	2	0	4	3	7,5		
477 CE	Intermediate Fluid	2	2	0	4	3	7,5		
464	Mechanics	2	_		-		7,5		
CE	Intermediate Structural	2	2	0	4	3	7,5		1
548	Dynamics		_		'		7,5		
CEN	Introduction to Remote	2	2	0	4	3	7,5		1
436	Sensing for Earth	_			•		,,5		
	Observation								
ARCH	Landscape Perspectives	2	0	2	4	3	7,5		
451	in DRM & FS								
CE	Legal Aspects In	2	2	0	4	3	7,5		
413	Construction Works								<u> </u>
CE	Life-Cycle Assesment-	2	2	0	4	3	7,5		
469	Sustainable								
CE	Construction Masonry Structures	2	2	0	4	3	7,5		+
587	wiasomy suuciules			0	-		1,5		
CE	Materials Testing and	2	2	0	4	3	7,5		1
544	Measurements	~			T		,,,,		
· · ·						<u> </u>	1		1

CE 520	Modeling In Hydrology	2	2	0	4	3	7,5
CE 416	Risk Management in Construction	2	2	0	4	3	7,5
CE 455	River Engineering	2	2	0	4	3	7,5
CE 473	River Hydraulics	2	2	0	4	3	7,5
CE 533	Soil Improvement Techniques	2	0	2	4	3	7,5
CE 532	Soil Structure Interaction	2	2	0	4	3	7,5
CE 549	Special Concretes	2	0	2	4	3	7,5
CE 547	Supplementary Cementing Materials	2	2	0	4	3	7,5
CE 523	Waste Water Treatment Plants	2	2	0	4	3	7,5
CE 526	Water Resources Engineering	2	2	0	4	3	7,5
CE 483	Water Supply System	2	2	0	4	3	7,5

4. Construction Materials Profile Curricula:

FIRST	YEAR								
First S	emester								
COURS	SES	Course	Compulsory	Weekly	Course I	Distributio	n	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 423	Project Planning	В	Compulsory	2	2	0	4	3	7.5
CE 435	Reinforced Concrete Structures	В	Compulsory	2	2	0	4	3	7.5
CE 459	Durability of Concrete	В	Compulsory	2	0	2	4	3	7.5
CE	Technical Elective	С	Elective	2	2	0	4	3	7.5
Semest	ral Total			8	6	2	16	12	30
Second	l Semester								
COURS	SES	Course	Compulsory	Weekly	Course I	Distributio	n	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 442	Advanced Numerical Methods	A	Compulsory	2	2	0	4	3	7.5
CE 454	Advanced Construction Materials	В	Compulsory	2	0	2	4	3	7.5

CE 555	Earthquake Resistant Design of Structure	В	Compulsory	2	2	0	4	3	7.5
CE 562	Computer Application in Civil Engineering	В	Compulsory	2	0	2	4	3	7.5
	ral Total			8	4	4	16	12	30
								<u> </u>	
SECO	ND YEAR								
Third S	Semester								
COURS		Course	Compulsory	Weekly	Course I	Distributio	n	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 503	Research Methods	В	Compulsory	2	2	0	4	3	7.5
	Technical Elective	С	Elective	2	2	0	4	3	7.5
CE 507	Supervised Independent Study and Research	В	Compulsory	4	2	2	8	6	15
	ral Total	l	1	8	6	2	16	12	30
				1	1	1	1	1	1
Fourth	n Semester								
COURS		Course	Compulsory	Weekly	Course I	Distributio	n	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	2012
CE	Master Thesis	Е	Compulsory	0	0	0	0	0	30
500 Semesti	 ral Total			0	0	0	0	0	30
Semest	101110111			0	•	•		0	30
		Weekly (Course Distribut	ion		Epoka	ECTS		
	Electives	Theory	Pract.	Lab.	Total	Credits	Lets		
CE	Admixtures for	2	2	0	3	3	7,5		
584	Concrete	2	2	0	3	3	7,3		
CE 543	Advanced Concrete Technology	2	2	0	3	3	7,5		
CE 540	Advanced Materials Science	2	2	0	3	3	7,5		
CE 591	Advanced Structural Analysis	2	2	0	3	3	7,5		
CE 419	Building Construction Estimating	2	2	0	3	3	7,5		
CE 538	Composite Materials	2	2	0	3	3	7,5		
CE 437	Computational Fluid Dynamics	2	2	0	3	3	7,5		
CE 443	Construction Contracts	2	2	0	3	3	7,5		
CE 417	Construction Site Techniques	2	2	0	3	3	7,5		
CE	Earthquake Disaster Mitigation	2	2	0	3	3	7,5		
484		1	2	0	3	3	7,5		
484 CE 449	Economics of	2	2						
	Economics of Sustainability Fundamentals of River Engineering	2	2	0	3	3	7,5		

CE 478 Hydraulic Structures 2 2 0 3 3 7,5 CE Intermediate Fluid 464 2 2 0 3 3 7,5 CE Intermediate Structural 548 Dynamics 2 2 0 3 3 7,5 CEN Introduction to Remote 436 2 2 0 3 3 7,5 436 Sensing for Earth Observation 0 2 3 3 7,5 451 in DRM & FS 0 2 3 3 7,5	
CE 464 Intermediate Fluid 464 2 2 0 3 3 7,5 CE Intermediate Structural 548 Dynamics 2 2 0 3 3 7,5 CEN Introduction to Remote 436 2 2 0 3 3 7,5 Sensing for Earth Observation 0 2 3 3 7,5 ARCH Landscape Perspectives 2 0 2 3 3 7,5	
464 Mechanics 0 3 3 7,5 CE Intermediate Structural 548 2 2 0 3 3 7,5 548 Dynamics 2 2 0 3 3 7,5 CEN Introduction to Remote 2 8 2 2 0 3 3 7,5 436 Sensing for Earth Observation 0 2 3 3 7,5 ARCH Landscape Perspectives 2 0 2 3 3 7,5	
CE 548 Intermediate Structural 548 2 0 3 3 7,5 CEN Introduction to Remote 436 2 2 0 3 3 7,5 436 Sensing for Earth Observation 0 2 3 3 7,5 ARCH Landscape Perspectives 2 0 2 3 3 7,5	
548 Dynamics CEN Introduction to Remote 2 2 0 3 3 7,5 436 Sensing for Earth Observation Observation 2 3 3 7,5 ARCH Landscape Perspectives 2 0 2 3 3 7,5	
CEN Introduction to Remote 2 2 0 3 3 7,5 Sensing for Earth Observation ARCH Landscape Perspectives 2 0 2 3 3 7,5	
436 Sensing for Earth Observation	
Observation 2 0 2 3 3 7,5	
ARCH Landscape Perspectives 2 0 2 3 3 7,5	1
451 in DDM & EC	l l
CE Legal Aspects In 2 2 0 3 3 7,5	
413 Construction Works	
CE Life-Cycle Assesment- 2 2 0 3 3 7,5	
469 Sustainable	
Construction	
CE Masonry Structures 2 2 0 3 3 7,5	
587	
CE Materials Testing and 2 2 0 3 3 7,5	
544 Measurements	
CE Modeling In Hydrology 2 2 0 3 3 7,5	
520	
CE Risk management in 2 2 0 3 3 7,5	
416 Construction	
CE River Engineering 2 2 0 3 3 7,5	
455	
CE Soil Improvement 2 0 2 3 3 7.5	
533 Techniques	
CE Soil Structure 2 2 0 3 3 7.5	
532 Interaction	
CE Special Concretes 2 0 2 4 3 7,5	
549	
CE Statistical Techniques 2 2 0 4 3 7,5	
452 In Hydrology	
CE Supplementary 2 2 0 4 3 7,5	
547 Cementing Materials	
CE Water Resources 2 2 0 4 3 7,5	
526 Engineering	

5. Professional Master Curricula

COUR	SES	Cours	Compulsor	Weekly	Course	Distribu	tion	Epok	ECT
Code	Course Name	e Type	y /Elective	Theor y	Pract .	Lab.	Total	a credit s	S
CE 423	Project Planning	A	Compulsor	2	2	0	4	3	7.5
CE 435	Reinforced Concrete Structures	В	Compulsor	2	2	0	4	3	7.5
CE 419	Building Construction Estimating	В	Compulsor y	2	2	0	4	3	7.5
	Technical Elective	С	Elective	2	2	0	4	3	7.5
Semest	tral Total		J	8	8	0	16	12	30
-	10								
Secon	d Semester	Cours	Commulant	Waalda	Caumaa	Diatailan	ti a.a.	Emple	ECT
Code	Course Name	Cours e Type	Compulsor y /Elective	Theor	Pract	Lab.	Total	Epok a credit	S
CE 420	Term Project	Е	Compulsor	1	4	0	5	3	7.5
CE 454	Advanced Construction Materials	В	Compulsor v	2	2	0	4	3	7.5
CE 470	Professional Practice	D	Compulsor	1	4	0	5	2	7.5
	Elective	С	Elective	3	0	1	4	3	7.5
Semest	tral Total		1	7	0	0	18	11	30
List of	Elective Courses								
Code	Course Name	Cours	Compulsor	Weekly	Course	Distribu	tion	Epok	ECT
0000	Course France	e Type	y /Elective	Theor	Pract .	Lab.	Total	a credit	S
	Electives							S	
CE 584	Admixtures for Concrete	2	2	0	4	CE 584	Admixtures for Concrete	3	7.5
CE 543	Advanced Concrete Technology	2	2	0	4	CE 543	Advanced Concrete Technology	3	7.5
CE 540	Advanced Materials Science	2	2	0	4	CE 540	Advanced Materials Science	3	7.5
CE 591	Advanced Structural Analysis	2	2	0	4	CE 591	Advanced Structural Analysis	3	7.5
CE 419	Building Construction Estimating	2	2	0	4	CE 419	Building Construction Estimating	3	7.5

CE 538	Composite Materials	2	2	0	4	CE 538	Composite Materials	3	7.5
CE 437	Computational Fluid Dynamics	2	2	0	4	CE 437	Computation al Fluid Dynamics	3	7.5
CE 562	Computer Application in Civil Engineering	2	2	0	4	CE 562	Computer Application in Civil Engineering	3	7.5
CE 443	Construction Contracts	2	2	0	4	CE 443	Construction Contracts	3	7.5
CE 417	Construction Site Techniques	2	2	0	4	CE 417	Construction Site Techniques	3	7.5
CE 484	Earthquake Disaster Mitigation	2	2	0	4	CE 484	Earthquake Disaster Mitigation	3	7.5
CE 449	Economics of Sustainability	2	2	0	4	CE 449	Economics of Sustainability	3	7.5
CE 463	Fundamentals of River Engineering	2	2	0	4	CE 463	Fundamentals of River Engineering	3	7.5
CE 451	Groundwater Engineering	2	2	0	4	CE 451	Groundwater Engineering	3	7.5
CE 478	Hydraulic Structures	2	2	0	4	CE 478	Hydraulic Structures	3	7.5
CE 464	Intermediate Fluid Mechanics	2	2	0	4	CE 464	Intermediate Fluid Mechanics	3	7.5
CE 548	Intermediate Structural Dynamics	2	2	0	4	CE 548	Intermediate Structural Dynamics	3	7.5
CEN 436	Introduction to Remote Sensing for Earth Observation	2	2	0	4	CEN 436	Introduction to Remote Sensing for Earth Observation	3	7.5
ARC H 451	Landscape Perspectives in DRM & FS	2	0	2	4	ARC H 451	Landscape Perspectives in DRM & FS	3	7.5
CE 413	Legal Aspects In Construction Works	2	2	0	4	CE 413	Legal Aspects In Construction Works	3	7.5
CE 469	Life-Cycle Assesment- Sustainable Construction	2	2	0	4	CE 469	Life-Cycle Assesment- Sustainable Construction	3	7.5
CE 587	Masonry Structures	2	2	0	4	CE 587	Masonry Structures	3	7.5
CE 544	Materials Testing and Measurements	2	2	0	4	CE 544	Materials Testing and Measurement s	3	7.5
CE 520	Modeling In Hydrology	2	2	0	4	CE 520	Modeling In Hydrology	3	7.5

CE	Risk management in	2	2	0	4	CE	Risk	3	7.5
416	Construction	_	-		'	416	management		, 10
							in		
							Construction		
CE	River Engineering	2	2	0	4	CE	River	3	7.5
455						455	Engineering		
CE	Soil Improvement	2	2	0	4	CE	Soil	3	7.5
533	Techniques					533	Improvement		
							Techniques		
CE	Soil Structure	2	2	0	4	CE	Soil Structure	3	7.5
532	Interaction					532	Interaction		
CE	Special Concretes	2	2	0	4	CE	Special	3	7.5
549						549	Concretes		
CE	Statistical Techniques In	2	2	0	4	CE	Statistical	3	7.5
452	Hydrology					452	Techniques		
							In Hydrology		
CE	Supplementary	2	2	0	4	CE	Supplementar	3	7.5
547	Cementing Materials					547	y Cementing		
							Materials		
CE	Water Resources	2	2	0	4	CE	Water	3	7.5
526	Engineering					526	Resources		
				1			Engineering		

6. Professional Master in "Disaster Risk Management and Fire Safety in Civil Engineering" Curricula:

COURS	ES	Cours	Compulsor	Weekly	Course l	Distributi	on	Epoka	ECT
Code	Course Name	е Туре	y /Elective	Theor y	Pract	Lab.	Tota 1	credit s	S
CE 431	Project Planning, Management and Coordination	A	Compulsor y	2	2	0	4	3	7.5
CE 447	Structural Fire Safety	В	Compulsor y	2	2	0	4	3	7.5
CE 473	Flood Risk Assessment	С	Compulsor y	2	2	0	4	3	7.5
	Elective	С	Elective	2	2	0	4	3	7.5
Semestra	al Total	•		8	8	0	16	12	30
					•				
Second	Semester								
COURS	ES	Cours	Compulsor	Weekly Course Distribution				Epoka	ECT
Code	Course Name	е Туре	y /Elective	Theor y	Pract .	Lab.	Tota 1	credit s	S
CE 454	Risk Analysis in Decision- making Process	В	Compulsor y	2	2	0	4	3	7.5
ARCH 428	Evaquation Calculation Modeling	В	Compulsor y	2	2	0	4	3	7.5
CE 476	Supervised Independent Study	Е	Compulsor y	2	2	0	4	2	7.5
CE 470	Professional Practice	D	Compulsor y	2	2	0	4	3	7.5

Semestr	ral Total			8	8	0	16	12	30
List of	Elective Courses				•		•		
Code	Course Name	Cours	Compulsor	Weekly	Course	Distributi	on	Epoka	ECT
		e Type	y /Elective	Theor	Pract	Lab.	Tota	credit	S
				у			1	S	
CE	Admixtures for Concrete	2	2	0	4	CE	4	3	7.5
584 CE	A 11 C	2	2	0	4	584 CE	4	3	7.5
543	Advanced Concrete Technology	2	2	U	4	543	4	3	7.3
CE	Advanced Materials Science	2	2	0	4	CE	4	3	7.5
540		_			-	540	1		,
CE	Advanced Structural Analysis	2	2	0	4	CE	4	3	7.5
591				_		591			
CE	Building Construction	2	2	0	4	CE	4	3	7.5
419 CE	Estimating Composite Materials	2	2	0	4	419 CE	4	3	7.5
538	Composite Materials	2			-	538	-		7.5
CE	Computational Fluid	2	2	0	4	CE	4	3	7.5
437	Dynamics					437			
CE	Computer Application in	2	2	0	4	CE	4	3	7.5
562	Civil Engineering	2	2	0	1	562	1	2	7.5
CE 443	Construction Contracts	2	2	0	4	CE 443	4	3	7.5
CE	Construction Site Techniques	2	2	0	4	CE	4	3	7.5
417		_			-	417	1		,
CE	Earthquake Disaster	2	2	0	4	CE	4	3	7.5
484	Mitigation				1	484	1		
CE	Economics of Sustainability	2	2	0	4	CE	4	3	7.5
449 CE	Fundamentals of River	2	2	0	4	449 CE	4	3	7.5
463	Engineering	2	2	U	-	463	-	3	7.5
CE	Groundwater Engineering	2	2	0	4	CE	4	3	7.5
451						451			
CE	Hydraulic Structures	2	2	0	4	CE	4	3	7.5
478 CE	Intermediate Fluid Mechanics	2	2	0	4	478 CE	4	3	7.5
464	intermediate Fluid Mechanics	2	2	U	4	464	4	3	7.3
CE	Intermediate Structural	2	2	0	4	CE	4	3	7.5
548	Dynamics					548			
CEN	Introduction to Remote	2	2	0	4	CEN	4	3	7.5
436	Sensing for Earth Observation	2			1	436	1	2	7.5
ARCH 451	Landscape Perspectives in DRM & FS	2	0	2	4	ARC H 451	4	3	7.5
CE	Legal Aspects In	2	2	0	4	CE	4	3	7.5
413	Construction Works	~	-		'	413	'		'.5
CE	Life-Cycle Assesment-	2	2	0	4	CE	4	3	7.5
469	Sustainable Construction				1.	469	ļ.,		
CE	Masonry Structures	2	2	0	4	CE	4	3	7.5
587 CE	Materials Testing and	2	2	0	4	587 CE	4	3	7.5
544	Measurements				-	544	-		1.5
CE	Modeling In Hydrology	2	2	0	4	CE	4	3	7.5
520					<u> </u>	520	<u> </u>		

CE	Risk management in	2	2	0	4	CE	4	3	7.5
416	Construction	2		U	7	416	-		7.5
CE	River Engineering	2	2	0	4	CE	4	3	7.5
455	Tuver Engineering	_				455			,
CE	Soil Improvement Techniques	2	2	0	4	CE	4	3	7.5
533						533			
CE	Soil Structure Interaction	2	2	0	4	CE	4	3	7.5
532						532			
CE	Special Concretes	2	2	0	4	CE	4	3	7.5
549						549			
CE	Statistical Techniques In	2	2	0	4	CE	4	3	7.5
452	Hydrology					452			
CE	Supplementary Cementing	2	2	0	4	CE	4	3	7.5
547	Materials					547			
CE	Water Resources Engineering	2	2	0	4	CE	4	3	7.5
526						526			

7. PhD Curricula:

Year I - First Semes	ter	T	P	C	ECTS
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
Total:		12	0	12	30

Year I - Second Semester		T	P	C	ECTS
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
Total:		12	0	12	30

Year II+III		T	P	C	ECTS
CE 800	PhD Thesis	0	0	0	120
Total:		0	0	0	120

D. Teaching, Learning, Assessment & Research

Undergraduate Students' List of Graduation Project

- 1. Antonela Ndoj," Development of Automation Procedures and Techniques for Massive Data on Land Computation and Indeterminate Problems of Structural Engineering" MSc. Marsed Leti
- Endri Myftaraj, "Effect of Polypropylene Fibers on the Compressive Strength of plaster Mortars", Dr. Erion Luga
- 3. Eringled Rexhepi, "Effect of Recycled Polyethylene Terephthalate Fibers on the Compressive Strength of Plaster Mortar", Dr. Erion Luga
- 4. Gerta Isufaj, "A new approach to structural Learning using Plastic modular Systems", MSc. Marsed Leti
- 5. Gledis Shuaipi, "Detailed Quantity Takeoff and Cost Estimate", Dr. Julinda Keçi
- 6. Igli Çelniku, "Design of Reinforced Concrete Structure According to EN-1992", Prof. Dr. Huseyin Bilgin
- 7. Joana Biba, "Affordable plastic structural kit", MSc. Marsed Leti
- 8. Klea Kasa, "Quantity Takeoff and Time Estimation for a Construction Project", Dr. Julinda Keçi
- 9. Kledion Laçaj, "Properties of Low-Density Polyethylene (LDPE) Plastic BAG Fibers in Mortar", Dr. Erion Luga
- 10. Lambjon Salihaj, "Water Supply of A City", Assoc. Prof. Dr. Mirjam Ndini
- 11. Rezar Lleshi, "Restoration of Erzen River" Assoc. Prof. Dr. Mirjam Ndini
- 12. Rubin Parllaku, "Design of a 5-Storey Residential RC Building According to Eurocodes", *Prof. Dr. Huseyin Bilgin*

Graduate Students' List of Theses

- 1. Eva Koçi, "Rainwater Harvesting Systems", Assoc. Prof. Dr. Mirjam Ndini
- 2. *Geron Rakipaj*, "Life Cycle Cost and Budget Analysis of a Green Building A Case Study", *Dr. Julinda Keçi*
- 3. Alket Bedini "Technical Detailed Design for the Realization of Improved Quays Wall Structure in the Port of Durres", Assoc. Prof. Dr. Huseyin Bilgin
- 4. *Altin Myzeqari*, "Influence of Slab Types on the Seismic Performance of Multi-Story RC Buildings", *Assoc. Prof. Dr. Huseyin Bilgin*
- 5. Brisilda Begu, "Factors Affecting Time and Cost Overrun in Road Construction Projects in Albania", Dr. Julinda Keçi
- 6. Jurgen Mema, "Vulnerability Assessment of Reinforced Concrete Structures, A Case Study from Albania", Dr. Enea Mustafaraj
- 7. Marjana Gjoni, "Effects of Masonry Infill Walls on Seismic Response of Multi-Storey Reinforced Concrete Structure", Dr. Erion Luga

Research Areas and Research Groups

Research Area: Structural/Earthquake Engineering

The goal of our research group in structural/earthquake engineering is to improve the seismic resiliency of societies through improved engineering and management tools for critical infrastructure systems including reinforced concrete, masonry as well as steel structures. Graduates courses are available in static/dynamic analysis and structural design theory.

Failures of structures during severe earthquakes are responsible for losses and casualties in seismic regions around the world including our region. Most of the structural failures can be attributed to poorly detailed/constructed components of the buildings systems (e.g. columns, beam-column joints, masonry walls). Recent research has proven the effectiveness of various innovative strengthening

techniques at enhancing the performance of such substandard components, it is still necessary to develop design guidelines that lead to more cost-effective solutions.

Potential MSc/PhD topics include assessment, retrofit/strengthening of Reinforced Concrete, steel and masonry structures as follows:

- Use of Fiber Reinforced Polymers (FRP) for strengthening,
- Use of hybrid strengthening solutions for rehabilitation,
- Testing techniques for seismic performance assessment,
- Seismic analysis and design of buildings equipped with energy dissipative devices,
- Vulnerability assessment and upgrading of existing infrastructure,
- Fragility based assessment of existing infrastructure,
- Performance based evaluation of the existing infrastructure,

Another research area is related with the stability and dynamics of the historical masonry buildings constructed during the Post-Byzantine period on massive Roman vaulted structures. Using the methods of Heyman's limit analysis approach, load bearing mechanism and collapse analysis of these structures will be investigated. Based on the findings, seismic safety of the theses monumental structures will be explored.

Team Memebers: Assoc. Prof. Hüseyin Bilgin, PhD. Enea Mustafaraj, PhD. Erion Luga. PhD (c) Mario Hysenlliu, PhD (c) Marsed Leti, Asisst. MSc. Armando Demaj.

Research area: Water Resources Engineering

This research area deals with research and practical applications of hydrology and hydraulics as an integral part of the civil engineering. Water is the key element and a valuable resource for human development which depends on the availability of water resources. It is of great importance a comprehensive understanding of the fundamental force of water to be capable to deal with its

consequences—such as flooding—manage the increasing demands for water, managing the water in a sustainable way, and utilize hydraulic energy. Due to climate change impact, population growth

and increasing water demand, the importance of research on water issues is going to increase in the future. Hydrology and hydraulics are two of fundamental sciences providing the basic knowledge for the development and controlling of water resources.

Hydraulic structures for flow controls are important elements of application and their designs, involves the interaction between structure and flow. Engineering studies include the analysis of flows, the ways in which the water regime and the flow pattern are affected by the structure and the environment responds to these changes.

The most prominent hydraulic structures are dams for water storage. They are indispensable structures for the watershed-based development. The planning, design, construction and operation of dams are vital parts of a variety of water uses: water supply for domestic, irrigation and industrial uses; protection of life and property from flooding; hydro-electric energy generation and storage of large amounts of energy for economic growth, etc. But all these uses involve systems of other structures as well and all these elements comprise structural analysis, materials science and the technology of structures. The types of structures and their design have evolved, and new challenges come from applying new construction technologies and from the application of value engineering and probabilistic design to provide economically balanced solutions.

The research of hydraulic engineering group will contribute to these challenges not just to give an understanding of the processes but recommending effective measures for practical solutions.

Team Members: Assoc. Prof. Miriam Ndini, Assoc. Prof. Hüseyin Bilgin, PhD Enea Mustafaraj, PhD Erion Luga, PhD Julinda Keci.

3. Research Area: Sustainability in Civil Engineering

This research area deals with the contribution of civil engineering and related disciplines in the creation of a sustainable living environment. Sustainability in civil engineering means, performing construction and management activities without any reduction of resources or causing any harmful effect to the environment. In this context the Department of Civil Engineering at Epoka University is dedicated to work and contribute for building a better future for the next generations by conducting research on:

 Assessing the structural integrity of civil engineering structures and develop retrofitting methods and techniques for a more secure built environment.

Old buildings, bridges or historical monuments are part of people's daily life. In many countries hundreds of casualties are reported because of lack of assessment and maintenance of these structures. For that reason, they need to be assessed for structural integrity and retrofitted in case of improper conditions.

 Solutions related to the reuse of underused facilities or reuse of structural members of these facilities.

In Albania there are many industrial sites or buildings which for the moment are underused. On the other hand, many infrastructure projects cannot be implemented, or people cannot afford the cost of brand-new houses. These underused facilities may be totally or partially reused to construct low budget infrastructure or houses.

• Recycling of industrial and demolition wastes in the production of construction materials.

The production of many construction materials is responsible for the release of high amounts of wastes and consumption of unbelievably large amounts of natural resources. On the other hand, industrial by products such as slag, fly ash, silica fume etc. or demolition wastes are becoming serious problems for occupying large areas of land and causing serious environmental problems, for that reason the reuse and recycling of these wastes has become an emergency for many

countries including Albania. So, by developing efficient and sustainable techniques we aim to offer to our society a cleaner and more livable environment.

Development of innovative and high-performance materials for safer and more comfortable structures.

Traditional materials used in the construction offer many advantages to the construction industry, but beside these advantages there are also some deficiencies of these materials which need to be improved or sometimes even produce innovative materials to withstand better their conditions of service. The development of innovative and high-performance materials for safer and more comfortable environment rises as a necessity for a more sustainable living.

Integration of sustainability principles in the design and management of construction projects.

Construction projects involve activities such as: use of materials from various sources, machineries, demolition of existing structures, use of green fields, cutting down of trees etc. All of these processes affect the environment in different ways like generation of waste materials, emissions from vehicles, machineries, noise pollution due to use of heavy vehicles and construction machineries, consumption of natural resources etc. Sustainability assessment of construction projects is essential to the fact that it does not create any harmful effects on the living ecosystem while optimizing the cost of construction. In order to ensure the availability of resources for the future generations and build affordable and manageable structures, it is very important to integrate the sustainability principles in the design and management of construction projects.

Team Members: Assoc. Prof. Miriam Ndini, Assoc. Prof. Hüseyin Bilgin, PhD Enea Mustafaraj, PhD Erion Luga, PhD Julinda Keci, PhD (c) Marsed Leti

List of Publications

No	Name Surname	Scientific Publications and Academic Activities
1,0	1 (44110 2 511141110	Zeromino I demonitoria di Propinsi I dell'Anno I dell'
1	Luga, Erion; Periku, Erion;	A pioneer in-situ investigation on the bearing capacity and failure causes of real scale fully grouted rockbolts
2	Mustafaraj, Enea; Luga, Erion; Corradi, Marco; Borri, Antonio; Muceku, Ylber; Zharkalli, Aleksandra;	Physical-Mechanical Properties of Stone Masonry of Gjirokastër, Albania
3	Dr. Enea Mustafaraj	Earthquake-triggered mass movements in Albania
4	Dr. Enea Mustafaraj	Physical-Mechanical Properties of Stone Masonry of Gjirokastër, Albania
5	Dr. Enea Mustafaraj	Sustainability considerations in remediation, retrofit and seismic upgrading of historic masonry structures Environmental Science and Pollution Research
6	Prof. Dr. Huseyin Bilgin	Architectural Characteristics and Seismic Vulnerability Assessment of a Historical Masonry Minaret under Different Seismic Risks and Probabilities of Exceedance
7	Prof. Dr. Huseyin Bilgin	Performance of URM structures under earthquake shakings: Validation using a template building structure by the 2019 Albanian earthquakes
8	Prof. Dr. Huseyin Bilgin	A comparative study on the seismic provisions of different codes for RC buildings.
9	Prof. Dr. Huseyin Bilgin	TBDY-2018'de verilen tasarim spektrumlarinin anitsal yiğma yapi sismik davranişina etkisi

		,
10	Prof. Dr. Huseyin Bilgin	Damage potential of near and far-fault ground motions on seismic response of RC buildings designed according to old practices
11	Prof. Dr. Huseyin Bilgin	Numerical Study to Assess the Structural Behavior of the Bajrakli Mosque
12	Prof. Dr. Huseyin Bilgin	Performance of RC and Masonry Structures During 2019 Durrës Earthquake
13	Prof. Dr. Huseyin Bilgin	Seismic Performance Assessment of a Moment-Frame Reinforced Concrete Building Typology
14	Prof. Dr. Huseyin Bilgin	Damage and performance evaluation of masonry buildings constructed in 1970s during the 2019 Albania earthquakes
15	Prof. Dr. Huseyin Bilgin	Seismic performance of existing low-rise URM buildings considering the addition of new stories
16	MSc. Marsed Leti	Damage potential of near and far-fault ground motions on seismic response of RC buildings designed according to old practices. Research on Engineering Structures & Materials (RESM)
17	MSc. Marsed Leti	Performance of RC and Masonry Structures During 2019 Durrës Earthquake.
18	MSc. Marsed Leti	Seismic Performance Assessment of a Moment-Frame Reinforced Concrete Building Typology
19	Dr. Julinda Keçi	Output Performance-Based Contracts for Sustainable Infrastructure Maintenance

20	MSc. Armando Demaj	Study on the effect of the bedding mortar composition on the shear and compression behavior of old brick masonry walls
21	MSc. Armando Demaj	Shear Strength of Cement Mortar Masonry Walls - Experimental Assessment through Diagonal Compression Test
22	MSc. Armando Demaj	Ensaios de compressão diagonal sobre paredes de alvenaria de tijolo cerâmico maciço e argamassas de cimento
23	MSc. Armando Demaj	Avaliação e caracterização sísmica de um edifício de placa
24	MSc. Armando Demaj	In-Plane Seismic Behavior of Brick Masonry Walls Reinforced with Twisted Steel Bars and Conventional Steel Bars, Buildings

Participation of Academic Staff in Academic Events

Projects

E. Support, Resources & Representation

Participation in Academic Events

Research Projects

(Write a paragraph for each project applied and/ or awarded highlighting the area of the project, members, targeted group, grant used, expected outcomes). Associate the text with at least one picture.

Industry Projects

(Write a paragraph for each project highlighting the area of the project, members, targeted group, grant used, expected outcomes). Associate the text with at least one picture.

Community Projects

(Write a paragraph for each project highlighting the area of the project, members, targeted group, grant used, expected outcomes). Associate the text with at least one picture.

Student Club Projects

Student Best Success Stories

(Choose up to five best student success stories and write one to two paragraphs for each. Associate the text with a picture of the student)

Office Holders

The department would like to thank the following for their valuable contribution to teaching, administration and management over the past year:

Assoc. Prof. Dr. Miriam Ndini

Prof. Dr. Hűseyin Bilgin

Dr. Erion Luga

Dr. Enea Mustafaraj

Dr. Julinda Keçi

MSc. Armando Demaj

MSc. Marsed Leti

MSc. Margarita Dajko

Department Coordinator Amelia Bullari

Acknowledgements

In addition to the Office Holders listed above, the department would like to thank the following for their collaboration to make this department offer all the facilities needed for the students.

Department of Civil Engineering

Epoka University Rr. Tirane- Rinas, Km. 12, 1039, Tirane/Albania Phone: +355 4 2232 086 Fax: +355 4 2222 117

Email: info@epoka.edu.al