

ANNUAL REPORT

1 September 2019 – 15 August 2020

Annual Report

1 September 2019 – 15 August 2020

Contents

A. Organization & Management	4
General	4
Mission	4
Study programs offered by the Department	5
B. Resources	10
Administrative Staff.	14
Finance	14
IT Resources, Physical Infrastructure and Library Resources	14
C. The Curriculum	15
Graduate Teaching	18
D. Teaching, Learning, Assessment & Research	32
Graduate Students' List of Theses	32
Research Areas and Research Groups	33
List of Publications	37
Participation of Academic Staff in Academic Events	40
Projects	41
E. Support, Resources & Representation	41
Participation in Academic Events	42
Student Best Success Stories	45
Office Holders	46
Acknowledgements	46

A. Organization & Management

Introduction

General

Civil Engineering covers a wide range of engineering applications from dams, tunnels, pipelines and highways to buildings. Civil Engineering is distinguished as being one of the earliest engineering disciplines. Throughout the ages it has provided creative and feasible solutions to many of the basic human needs and problems, and it still continues to take pride in being a fundamental building block of civilization

Mission

Understanding of the fundamentals of science and engineering so that they can develop solutions to Civil Engineering problems and enhance their computing, communication, and research skills. It is aimed to especially emphasize teamwork, independent and innovative thinking and leadership qualities. In particular, the Civil Engineering Program aims to:

- Train the students to have theoretical background in basic sciences and engineering and to be equipped with necessary technical skills,
- Develop students' competency in reading, writing and oral communication,
- Provide practical experience which will enable students to utilize and enhance their engineering knowledge,
- Promote students' self-discipline and self-assurance and the ability to learn on their own,
- Encourage teamwork, collaboration and development of interpersonal skills,
- Motivate the students towards contributing to the progress of science and technology,
- Teach the importance of ethical behavior in social and professional life,
- Produce graduates for the engineering and the business communities who are observant, inquisitive and open to new technologies for developing better solutions,
- Produce graduates for the engineering and business communities with integrity, determination, judgment, motivation, ability and education to assume a leadership role to meet the demanding challenges of the society.

Study programs offered by the Department

1. The Bachelor

The Bachelor Program in Civil Engineering is composed of three years of full-time academic study.

The first year of the degree program present a broad, practical overview of the field of Civil Engineering. During this first year, presentation of the course material is primarily delivered at a foundational level with engineering fundamentals stressed and reinforced across the curriculum. A strong understanding of practical and physical principles is fostered and promoted, and an abundance of learning opportunities is provided to apply these fundamentals to the solution of real-world design scenarios that would be encountered by both technologists and engineers. Throughout the program, opportunities are presented to students to strengthen their graphical, written, and oral communication skills. A significant amount of time is directly related to hands-on training in material testing, surveying, manual and computer-aided drafting, and instruction in the use of engineering software tools.

The second and third year are mainly composed of basic engineering courses involving the study and application of the principles of geotechnical engineering (behavior of soils, design of foundations), structural engineering (analysis and design of reinforced concrete and steel structures), hydraulics engineering (flow of water in pipes, open channels, water resources), and the general systems approach to engineering problems. The final two years of the degree program are academically rigorous, with thorough investigation of the theoretical foundations of civil engineering science and design topics. At the same time, the practical application of civil engineering knowledge is presented and applied through course assignments and project work. Additionally, the student is challenged to view the engineer's role from an interdisciplinary and multidisciplinary perspective. The role of the engineer as a manager is also developed. In the final two years of the program, the student's educational experience is enriched through a series of liberal studies courses. To further develop engineering skills for professional practice, the degree concludes with the completion of a summer practice.

In the second semester of third year, students whose GPA is higher than 3.0 have the chance to choose between graduation project (Microthesis) or comprehensive exam. Students whose GPA is below 3.0 are obliged to enter the comprehensive exam.

2. Professional Master

The Professional Master of CE Program offers a year of advanced study for graduate students with previous professional degrees in civil engineering (or equivalent with a strong knowledge background). This Professional Master's degree program is an interdisciplinary program of study with a concentrated time for completion. The program is intended for qualified students who already have professional work experience. Students without professional experience after completion of the professional degree may be admitted, depending on the quality of their work. Students must demonstrate evidence of high-quality work and potential for development based on their grade-point average, letters of recommendation. Classes generally take place in the evenings (6.00 pm – 9.00 pm). The program's goals are to further train professionals in civil engineering who are able to work effectively in teams across a large range of scales and with a well-developed knowledge. The program offers a unique blend of courses in different areas. Students will share working methods, acquire additional skills, and explore new avenues of professional development under the supervision of an interdisciplinary group of faculty members in the Department of Civil Engineering at Epoka University.

Curriculum

The Professional Master degree combines a core curriculum with the opportunity to take elective courses tailored to a student's particular areas of interest. These courses typically relate to the student's field of interest and are selected by the student in consultation with department advisor. To earn the Professional Master degree, students must complete one year in residence, 60 ECTS credits of coursework and the core curriculum.

Course Structure

The program is taught in English. Therefore, Albanian and international applicants from countries in which the official language is not English are required to submit official evidence of English language proficiency.

3. Master of Science

Our practice-oriented Master of Science in Civil Engineering (MSc) program builds upon an undergraduate education and facilitates more advanced study in one of the branches of civil engineering. The program consists of 120 ECTS, and all graduate courses are offered in the late afternoon or evening.

Mission Statement

The Master of Science in Civil Engineering (MSc) program is intended to serve graduate students who have a Bachelor on Civil Engineering or closely related undergraduate degree in order to strengthen their knowledge and understanding of civil engineering principles and practices. The program is primarily intended for students who currently are, or intend to become, practicing civil engineers, and thus focuses on the application of these principles and practices to real-world problems encountered by professional civil engineers.

Another purpose of the program is to facilitate applied research on relevant civil engineering topics. Such research should 1) serve societal needs by addressing contemporary issues, 2) contribute to the professional development of both students and faculty and 3) provide preparation for further academic study and research for those students who wish to pursue a Ph.D.

Educational Objectives

Graduates of the MSc program should have:

- 1. A knowledge of engineering principles sufficient to understand the bases and applicability of standard analysis, design, and implementation practices within their emphasis area.
- 2. The ability to conduct engineering analyses and to develop and implement designs and problem solutions that conform to applicable codes and standards of practice.
- 3. An understanding of the various technical and non-technical factors that impact the feasibility and implementation of civil engineering projects, including: technical feasibility, multi-party involvement, environmental assessment, financial/economic planning, owner/public works administration, owners' strategic plans, and socioeconomic/equity issues.
- 4. The foundation needed to develop engineering judgment via professional practice, and to effectively identify, consider, and account for multiple and competing objectives.
- 5. The technical knowledge and skills needed to pursue lifelong learning with the ability to independently extend personal knowledge and understanding of engineering topics and practices by conducting literature searches, consulting with others, and using other similar techniques.
- 6. Knowledge and skills necessary to pass specialty license examinations in their respective emphasis areas.

Curriculum

The Master of Science in Civil Engineering offers to the students the possibility of specializing into four profiles such as: Structural Engineering, Construction Management, Construction Materials and Water Resources Engineering. It combines a core curriculum with the opportunity to take elective courses tailored to a student's particular areas of interest. These courses typically relate to the student's thesis topic and are selected by the student in consultation with department advisor. To earn the MSc degree, students must complete in total 120 ECTS credits from their coursework and a Master thesis.

Curriculum:

Structural Engineering

Construction Management

Construction Materials

Water Resources Engineering

Course Structure

The program is taught in English. Therefore, Albanian and international applicants from countries in which the official language is not English are required to submit official evidence of English language proficiency.

Master Thesis

Thesis topics are developed individually by the student in consultation with faculty advisor. To prepare for their thesis research and writing, students must complete a course that offers instruction in research methods and academic writing. Thesis committees consist of three members, usually faculty members of the Department of Civil Engineer at Epoka University. Students can also invite an outside reader to partake in the thesis committee.

A preliminary thesis proposal is prepared during the fall semester and presented to the department after the winter break. The thesis project is substantially developed during the spring semester in close collaboration with the academic advisor. The thesis is typically finalized during the summer and formally

presented to FAE faculty. (Although MSc students are strongly encouraged to complete their written thesis during the summer, students have the option of going on filing fee for an extra semester and finalizing their written thesis during the fall.)

4. PhD (Doctorate)

The objective of the doctoral study program is the advancement of analytical and/or experimental knowledge through a combination of specialized courses and a research thesis under the supervision of an experienced researcher forms the main component of the doctoral programs. Where possible, research of interest to industry is encouraged. CE-PhD Program in Civil Engineering is necessary for the formation of academicians in various fields of research in Civil Engineering. Program also gives opportunity to qualified students from various academic disciplines for further education at an advanced level in Civil Engineering. The PhD study program for full-time students lasts for a minimum of six semesters (three academic years), up to a maximum of eight semesters (four academic years) and for part-time students, it lasts for a minimum of six semesters (three academic years), up to a maximum of twelve semesters (six academic years). The first year is devoted to the core courses. Formal work on the dissertation begins in the second year; students are encouraged to get the start on their thesis by research and writing.

B. Resources

Department Staff

Dr. Erion Luga is the Director of Center of Research and Design in Applied Sciences at EPOKA University and a Lecturer in the Department of Civil Engineering. He got his integrated diploma in Civil Engineering in February 2009 from the Civil Engineering Department at the Polytechnic University of Tirana, then completed his Master of Second Level in February 2011 at EPOKA University in the subdiscipline of Construction Materials. In February 2015 he completed the PhD studies in the same field at Erciyes University/Turkey. His current research focuses on recycling of industrial by-products in construction materials, mainly in concrete, sustainability and optimization in their production etc. During his PhD studies Mr. Luga has also worked in the investigation of several structures and materials in the region of Kayseri, Turkey. During his research he has been dealing with the design of different materials to be introduced in the construction sector. Regarding his lecturing experience, he has been teaching courses such as: General Chemistry, Materials Science, Introduction to Construction Materials, Properties of Fresh & Hardened Concrete, Durability of Concrete, Special Concretes, Supplementary Cementing Materials and Advanced Concrete Technology. On the other hand, Dr. Luga has several journal publications in indexed journals also he has participated in different conferences related to concrete and construction materials. He has also supervised some very successful Master thesis.

He is also the Head of Department of Civil Engineering.

Assoc. Prof. Dr. Hüseyin Bilgin in the Civil Engineering Department at EPOKA University, Tirana Albania. He is actively taking part in teaching, research and the practice of structural and earthquake engineering, with emphasis on the response, analysis and design of reinforced concrete and masonry structures.

He teaches the compulsory core courses Engineering Mechanics and Mechanics of Materials for second-year students and, he is the coordinator of the elective courses Introduction to Structural Dynamics, Supervised Independent Study and Research and Introduction to Earthquake Resistant Design in the 7th and 8th semester of the area of structural engineering specialization. He also teaches the graduate courses Structural Dynamics and Earthquake Engineering.

His main research interests are related to the response of structures to extreme loads focusing on the areas of structural and earthquake engineering with the emphasis on problems of non-linearity and performance evaluation of members, connections and structures.

He has been involved in several research projects in these areas and has worked as an expert consultant on numerous engineering projects mostly made of reinforced concrete, but also of other structural materials. He has also participated in various national and international scientific activities related to structural and earthquake engineering.

He has supervised PhD, MSc and undergraduate students studying in the above fields.

Assoc Prof. Dr. Miriam Ndini. She is an Associated Professor in the Department of Civil Engineering at EPOKA University. Her research and teaching focuses on water, she is a hydrologist.

With a background in Civil Engineering- Hydraulics, she has been working as a researcher on the field of Hydrology. This work consists on estimation the water resources in the watershed, evaluating the flow parameters, measuring the data from the hydrologic network, elaboration and analyzing them.

Actively she is involved in projects dealing with effects of climate changes on water resources and its impact on different sectors.

All through research, she is involved in teaching. From the year 2000 she is teaching on the courses as Fluid Mechanics; River Mechanics; Water Resources Engineering and Hydrology.

Dr. Julinda Keçi is a faculty member of the Civil Engineering Department at EPOKA University, Albania. She has a Master of Science degree in Structural Engineering from Polytechnic University of Tirana, and a PhD in Civil Engineering, specializing in Construction Management. Her research interests include construction management and technology, project planning, risk management, and economic assessment of engineering projects. One of the primary foci of her work is the implementation of sustainable methods in projects management and building performance. She was involved in international projects and in the organization of several international Civil Engineering conferences. She has published works on risk management, construction management, project planning, building optimization through geotechnical and earthquake design, etc.

Dr. Enea Mustafaraj is a full-time lecturer at the Department of Civil Engineering at EPOKA University. He has actively been taking part in teaching of fundamental courses related to reinforced concrete design and the fundamentals of steel design, as well as analysis of structures in bachelor and

master level. He has also supervised bachelor and master students. His research activities are related to structural assessment of structures, mainly the historical ones, improvement of the performance of existing URM buildings using various retrofitting techniques. He completed his master studies in June 2012 with my thesis entitled "A Case Study of Structural Assessment of Five Ottoman Mosques in Albania". He was awarded the PhD degree in June 2016, with a dissertation entitled "External Shear Strengthening of Unreinforced Damaged Masonry Walls". During the last years, he has been studying structural performance of unreinforced, reinforced and damaged masonry walls subjected to diagonal compression (as of ASTM E-519-04). Dr. Mustafaraj has participated in national and international projects, conferences and workshops, and is author of more than 19 publications.

MSc. Armando Demaj is a full-time lecturer at the Department of Civil Engineering at EPOKA University. He holds a degree in Master of Second Level in Civil Engineering (Structural Engineering). He has been teaching in: Introduction to Computers and C Programming, Foundation Engineering, Soil Mechanics, Structural Analysis, Structural Mechanics etc. Moreover, he has been involved in several activities such as: Open Forums, Workshops, Site Visits, Laboratory experiments organized at EPOKA University during 2019-2020 academic year. He owns good command of English, different Programming Languages, SAP2000, Etabs, Zeus NL, Perform 3D, Microsoft Office, Google sheet, Matlab, USEE, Nonlin, Photoshop, Illustrator etc.

MSc. Marsed Leti is a Research Assistant in Civil Engineering Department at EPOKA University, Tirana, Albania. He holds a Master of Science degree in structural engineering from EPOKA University therefore his main research interests are related to the response of reinforced concrete structures under static and dynamic loading conditions conducted mainly by the non-linear analysis methods. He is dynamically taking part in teaching, research and student activities since 2014-2015 academic year. He has been teaching and assisting in: Civil Engineering Drawing, Engineering Mechanics I, Mechanics of Materials, Statics and Strength of Materials and Structural Mechanics. Moreover, he has been involved in several activities such as: Open Forums, Workshops, Site Visits, Laboratory experiments etc. organized at EPOKA University during 2014-2019 academic years. He owns good command of English, Civil Engineering, AutoCAD, SAP2000, Etabs, Zeus NL, Perform 3D, Stereo Statika, Microsoft Office, Google sheet, Matlab, USEE, Nonlin, Photoshop, Illustrator, After effects etc...

Part time Academic Staff

MSc. Vasil Leka

Assoc. Prof. Dr. Ylber Muçeku

Academic Visitors (2019-2020)

On Friday, November 15, Elson Bajrakurtaj, the "Director of Elysium Construction Company in UK" shared with our (*Undergraduate Civil Engineering*) students his experience on the "Leading and managing a construction company especially in a developed country such as United Kingdom".

Elysium Construction Ltd is an active company incorporated on 7 September 2016 with the registered office located in London, Greater London. Elysium Construction Ltd has been running for 3 years. Mr. Elson provided a very clear picure of his experience and journey of promotion from being a student until he became a successfull and well-known civil engineer.

In the end of the presentation general conclusions and drawbacks were outlined. Students of Civil Engineering Department were welcomed to ask questions and express their ideas about the discussed topics.

On November 25, 2019 Department of Civil Engineering organized an Open Lecture with Eng. Maksimiljan Dhima on the "Law of Civil Protection 45/2019".

Eng. Dhima, as one of the main stakeholders involved drafting the new law, shared with the master students his experience, the new aspects and provided a detailed description of the law related to civil protection and disaster risk reduction. The new law aimed at regulating the civil protection system functioning, defining institutional responsibilities and system structures, international cooperation, the rights and obligations of citizens and private entities, education, training and inspection.

On January 30, 2020, our PhD student Marjo Hysenlliu held an open lecture related with the seismicity of unreinforced masonry structures from Albanian practice. He is working with his thesis "Assessment of masonry stock buildings in Albania", under the supervision of Assoc. Prof. Dr. Huseyin Bilgin. A brief summary was given about the steps of this thesis development.

Administrative Staf

Ms. Amelia Bullari was graduated in Business Informatics in the Faculty of Economics and Administrative Science at EPOKA University. She is continuing her master studies in Business Administration in the same Faculty. She currently works as the coordinator of Civil Engineering Department at Epoka University.

Finance

IT Resources, Physical Infrastructure and Library Resources

C. The Curriculum

Undergraduate Teaching

	Faculty of Architecture	and Engin	eering												
D	Department of Civil		•												
	Engineering														
	FIRST YEAR														
	First Semester														
COUR	SES	Course	Compulsory		Jeekly			Epo	Sen	nestral	Lectu	ire an	d study	ring	ECTS
		Type	/Elective		Distril	oution		ka			ho				
Code	Course Name			The ory	Pra ct.	L ab	Tota 1	Cred its	Lec t.	Pra ct.	La b.	Si te W	Oth er	Tot al	
												•			
MTH 101	Calculus I	A	Compulsory	3	2	0	5	4	48	32	0	0	95	175	7
PHY 101	General Physics I	A	Compulsory	3	2	0	5	4	48	32	0	0	95	175	7
CHM 103	General Chemistry	A	Compulsory	3	0	0	3	3	48	0	0	0	36	84	4
CE 101	Introduction to Civil Engineering	В	Compulsory	2	0	0	2	2	32	0	0	35	33	100	4
CE 121	Civil Engineering Drawing	В	Compulsory	2	2	0	4	3	32	32	0	0	36	100	4
ENG 103	Development of Reading and Writing Skills in English I	D	Compulsory	3	0	0	3	3	48	0	0	0	52	100	4
Semest	ral Total			16	6	0	22	19	256	96	0	35	347	734	30
	FIRST YEAR														
	Second Semester														
COUR		Course Type	Compulsory /Elective		eekly Distril			Epo ka	Ser	nestral	Cour		d study	ing	ECTS
Code	Course Name			The	Pra	L	Tota	Cred	Lec	Pra	La	Si	Oth	Tot	
				ory	ct.	ab .	1	its	t.	ct.	b.	te W	er	al	

		, .			1		1		1	ı			•	ı	-
CE 132	Engineering Mechanics I	В	Compulsory	2	2	0	4	3	32	32	0	10	76	150	6
CE 122	Materials Science	С	Compulsory	3	0	0	3	3	48	0	0	10	42	100	4
MTH 102	Calculus II	A	Compulsory	3	2	0	5	4	48	32	0	0	95	175	7
ENG 104	Development of Reading and Writing Skills in English II	D	Compulsory	3	0	0	3	3	48	0	0	0	52	100	4
CEN 104	Introduction to Computers and Programming	D	Compulsory	2	2	0	4	3	32	32	0	0	61	125	5
CE 104	Geology for Civil Engineers	В	Compulsory	3	0	0	3	3	48	0	0	32	20	100	4
Semest	ral Total			16	6	0	22	19	256	96	0	52	346	750	30
	SECOND YEAR														
COURS	Third Semester	Course	Commulation	77	Vac1-1-	Com	:00	En-	C-	nostra1	Last	100 00	d a+1	inc	ECTS
COUR	DED	Type	Compulsory /Elective		Veekly Distril			Epo ka	Sen	nestral		ire an urs	d study	mg	ECIS
Code	Course Name	71		The ory	Pra ct.	L ab	Tota 1	Cred its	Lec t.	Pra ct.	La b.	Si te W	Oth er	Tot al	
						•						l w			
MTH 201	Differential Equations	A	Compulsory	3	0	0	3	3	48	0	0	0	77	125	5
CE 223	Introduction to Construction Materials	В	Compulsory	3	0	2	5	4	48	0	32	65	55	200	8
CE 213	Mechanics of Materials I	В	Compulsory	2	2	0	4	3	32	32	10	0	101	175	7
MTH 205	Probability and Statistics for Engineers	A	Compulsory	3	0	0	3	3	48	0	0	0	77	125	5
CE 233	Engineering Mechanics II	В	Compulsory	3	0	0	3	3	48	0	0	0	77	125	5
Semest	ral Total			14	2	2	18	16	224	32	42	65	387	750	30
	SECOND YEAR														
COURS	Fourth Semester	Course	Compulsory	\ \	Veekly	Cour	°CA	Еро	Sor	nactral	Cour	rea and	d study	ina	ECTS
COCK	JLS	Type	/Elective		Distril			ka	Bei	nestrai		urs	a stady	mg	LCID
Code	Course Name			The	Pra	L	Tota	Cred	Lec	Pra	La	Si	Oth	Tot	
				ory	ct.	ab	1	its	t.	ct.	b.	te W	er	al	
	*Elective	C	Elective	3	0	0	3	3	48	0	0	0	77	125	5
CE 214	Mechanics of Materials II	В	Compulsory	3	0	0	3	3	48	0	0	0	77	125	5
CE 240	Engineering Hydrology	В	Compulsory	2	2	0	4	3	32	32	0	42	35	141	5
CE 260	Structural Mechanics	В	Compulsory	4	0	0	4	4	64	0	0	20	66	150	6
CE 284	Surveying	С	Compulsory	2	2	0	4	3	32	32	0	36	25	125	5
	Non-technical elective	С	Elective	3	0	0	3	3	48	0	0	0	52	100	4
Semest	ral Total			17	4	0	21	19	272	64	0	98	332	766	30

	THIRD YEAR														
	Fifth Semester														
COUR	SES	Course Type	Compulsory /Elective		eekly Distrib			Epo ka	Sen	nestral		urs	d study	ring	ECTS
Code	Course Name			The ory	Pra ct.	L ab	Tota 1	Cred its	Lec t.	Pra ct.	La b.	Si te W	Oth er	Tot al	
CE 301	Summer Practise I	D	Compulsory	0	0	0	0	0	0	0	0	70	5	75	3
CE 311	Engineering Economics	С	Compulsory	2	2	0	4	3	32	32	0	0	61	125	5
CE 381	Principles of Transportation and Traffic Engineering	В	Compulsory	3	2	0	5	3	48	32	0	10	60	150	6
CE 395	Structural Analysis	В	Compulsory	4	0	0	4	4	64	0	0	30	56	150	6
CE 361	Soil Mechanics	В	Compulsory	4	0	0	4	4	64	0	0	40	21	125	5
CE 341	Fluid Mechanics	В	Compulsory	2	2	0	4	3	32	32	0	32	29	125	5
Semest	ral Total			15	6	0	21	17	240	96	0	18 2	232	750	30

	THIRD YEAR														
	Sixth Semester														
COUR	SES	Course Type	Compulsory /Elective		Veekly Distril			Epo ka	Ser	nestral	Cour		d study	ing	ECTS
Code	Course Name			The ory	Pra ct.	L ab	Tota 1	Cred its	Lec t.	Pra ct.	La b.	Si te W	Oth er	Tot al	
CE 332	Reinforced Concrete Fundamentals	В	Compulsory	4	0	0	4	4	64	0	0	36	25	125	5
CE 322	Construction Engineering and Management	В	Compulsory	4	0	0	4	4	64	0	0	36	25	125	5
CE 382	Foundation Engineering	В	Compulsory	2	2	0	4	3	32	32	0	36	25	125	5
CE 326	Hydromechanics	В	Compulsory	4	0	0	4	4	64	0	0	36	25	125	5
CE 348	Fundamental of Steel Design	В	Compulsory	2	2	0	4	3	32	32	0	36	25	125	5
CE 388	Graduation Project	E	Compulsory	0	0	0	0	0	16	59	0	0	50	125	5
CE 366	Final Comprehensive Exa	ım		0	0	0	0	0	16	0	0	0	109	125	
Semest	ral Total			16	4	0	20	18	288	123	0	18 0	284	875	30

Graduate Teaching

1. Structural Engineering Curricula

FIRST	YEAR								
First S	Semester								
COUR	SES	Course	Compulsory	Weekly Cou	rse Distribut	ion		Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 423	Project Planning	С	Compulsory	2	2	0	4	3	7.5
CE 435	Reinforced Concrete Structures	В	Compulsory	2	2	0	4	3	7.5
CE 548	Intermediate Structural Dynamics	В	Compulsory	2	2	0	4	3	7.5
CE	Technical Elective	С	Elective	2	2	0	3	3	7.5
Semest	tral Total			8	8	0	15	12	30
Secon	d Semester SES	Course	Compulsory	Weekly Cou	ırse Distribut	ion		Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 442	Advanced Numerical Methods	Е	Compulsory	3	0	0	3	3	7.5
CE 454	Advanced Construction Materials	В	Compulsory	2	2	0	4	3	7.5
CE 555	Earthquake Resistant Design of Structure	В	Compulsory	2	2	0	4	3	7.5
	Elective	D	Elective	3	0	0	3	3	7.5
Semest	tral Total			10	4	0	14	12	30

SECO	ND YEAR								
Third S	Semester								
COUR		Course	Compulsory	Weekly Cou	rse Distributi	ion		Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	•
CE 503	Research Methods	A	Compulsory	3	0	0	3	3	7.5
	Technical Elective	В	Elective	3	0	0	3	3	7.5
CE 507	Supervised Independent Study and Research	В	Compulsory	4	2	2	8	6	15
Semest	ral Total		·	10	2	2	14	12	30
Fourtl	h Semester								
COUR		Course	Compulsory	Weekly Cou	rse Distributi	ion		Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 500	Master Thesis	F	Compulsory	0	0	0	0	0	30
	ral Total	II.		0	0	0	0	0	
		Weekly	Course Distrib	ution		Epoka	ECTS		
	B- Type Electives	Theory	Pract.	Lab.	Total	Credits	-		
CE 532	Soil Structure Interaction	3	0	0	3	3	7,5		
CE 562	Computer Application in Civil Engineering	3	0	0	3	3	7,5		
CE 548	Intermediate Structural Dynamics	3	0	0	3	3	7,5		
CE 533	Soil Improvement Techniques	3	0	0	3	3	7,5		
CE 587	Masonry Structures	3	0	0	3	3	7,5		
CE 591	Advanced Structural Analysis	3	0	0	3	3	7,5		
CE 538	Composite Materials	3	0	0	3	3	7,5		
CE 547	Supplementary Cementing Materials	3	0	0	3	3	7,5		
CE 540	Advanced Materials Science	3	0	0	3	3	7,5		
CE 543	Advanced Concrete Technology	3	0	0	3	3	7,5		

CE	Materials	3	0	0	3	3	7,5	
544	Testing and							
	Measurements							
CE	Admixtures for	3	0	0	3	3	7,5	
584	Concrete	3	U	U	3	3	7,5	
		2	0	0	1	2	7.5	
CE	Special	3	0	0	3	3	7,5	
549	Concretes							
		Weekly	Course Distribi	ıtion	1	Epoka	ECTS	
		Weekiy	Course District	ation		Брока	Leis	
	C- Type Electives	Theory	Pract.	Lab.	Total	Credits		
CE	Legal Aspects	3	0	0	3	3	7,5	
413	In Construction							
113	Works							
CE		3	0	0	3	3	7.5	
CE	Construction	3	U	0	3	3	7,5	
417	Site Techniques	1			10	2	7.5	
CE	Risk	2	2	0	3	3	7,5	
416	management in							
	Construction				\perp			_
CE	Building	2	2	0	3	3	7,5	
419	Construction							
/	Estimating							
CE	Economics of	3	0	0	3	3	7,5	
		3	U	U	3	3	1,5	
449	Sustainability	2	0	0	12	2	7.5	=
CE	Construction	3	0	0	3	3	7,5	
443	Contracts				1			
CE	Hydraulic	3	0	0	3	3	7,5	
478	Structures				<u></u>			
CE	Fundamentals of	3	0	0	3	3	7,5	
484	River							
	Engineering							
CE	Statistical	3	0	0	3	3	7,5	
452	Techniques In)		0)	1,5	
432								
GE	Hydrology				1	-		
CE	Groundwater	3	0	0	3	3	7,5	
451	Engineering							
CE	Water	3	0	0	3	3	7,5	
526	Resources							
	Engineering							
CE	Modeling In	3	0	0	3	3	7,5	
520	Hydrology	3					1,5	
		2	0	0	2	2	7.5	
CE	Computational	3	0	0	3	3	7.5	
437	Fluid Dynamics		_		1	ļ		
CE	Intermediate	3	0	0	3	3	7.5	
464	Fluid Mechanics				1			
					+	1		
		Weekly	Course Distribi	ution		Epoka	ECTS	
	Electives	Theory	Pract.	Lab.	Total	Credits		
		THEOLY	1 Iact.	Lau.	1 Otal	Ciedits		
CE	Courses		2	0	1	2	7.5	=
CE	Reinforce	2	2	0	4	3	7,5	
435	Concrete							
	Structure							
			· · · · · · · · · · · · · · · · · · ·					

ARCH 451	Landscape Perspectives in DRM & FS	2	0	2	4	3	7,5	
CE 455	River Engineering	2	2	0	4	3	7,5	
CE 458	Advanced Construction Materials	2	0	2	4	3	7,5	
CE 484	Earthquake Disaster Mitigation	3	0	0	3	3	7,5	
CEN 436	Introduction to Remote Sensing for Earth Observation	3	0	0	3	3	7,5	

2. Construction Management Curricula

COURS	SES	Course	Compulsory	Weekly	Course I	Distributio	n	Epoka	ECT
Code	Course Name	Type	/Elective	Theor y	Pract.	Lab.	Total	Credit s	S
CE 423	Project Planning	В	Compulsory	2	2	0	4	3	7.5
CE 435	Reinforced Concrete Structures	В	Compulsory	2	2	0	4	3	7.5
CE 419	Building Construction Estimateing	В	Compulsory	2	2	0	4	3	7.5
	Technical Elective	С	Elective	3	0	0	3	3	7.5
Semestr	al Total			9	6	0	15	12	30
Second	l Semester								
COURS	SES	Course	Compulsory	Weekly	Course I	Distributio	n	Epoka	ECT
Code	Course Name	Type	/Elective	Theor y	Pract.	Lab.	Total	Credit s	S
CE 442	Advanced Numerical Methods	Е	Compulsory	3	0	0	3	3	7.5
CE 454	Advanced Construction Materials	С	Compulsory	2	2	0	4	3	7.5
CE 416	Risk Management in Construction	В	Compulsory	2	2	0	4	3	7.5
	Elective	D	Elective	3	0	0	3	3	7.5
Semesti	al Total	1		10	4	0	14	12	30
SECON	ND YEAR								
Third S	Semester								
COURS	SES	Course	Compulsory	Weekly	Course I	Distributio	n	Epoka	ECT
Code	Course Name	Type	/Elective	Theor	Pract.	Lab.	Total	Credit s	S
CE 503	Research Methods	A	Compulsory	3	0	0	3	3	7.5
	Technical Elective	В	Elective	3	0	0	3	3	7.5

CE 507	Supervised Independent Study and Research	В	Compulsory	4	2	2	8	6	15
Semestr	ral Total			10	2	2	14	12	30
Fourth	Semester								
COURS	SES	Course	Compulsory	Weekly	Course l	Distributio	on	Epoka	ECT
Code	Course Name	Туре	/Elective	Theor y	Pract.	Lab.	Total	Credit s	S
CE 500	Master Thesis	F	Compulsory	0	0	0	0	0	30
Semestr	ral Total			0	0	0	0	0	30
		Weekly	Course Distrib	ution		Epoka	ECT		
	C- Type Electives	Theor y	Pract.	Lab.	Total	Credit s	S		
CE	Legal Aspects In	3	0	0	3	3	7.5		
413	Construction Works	2				2	7.		
CE 417	Construction Site Techniques	3	0	0	3	3	7.5		
CE 449	Economy of Sustainability in Construction	3	0	0	3	3	7.5		
CE 443	Construction Contracts	3	0	0	3	3	7.5		
		Weekly	Course Distrib	ution		Epoka	ECT		
	C- Type Electives	Theor y	Pract.	Lab.	Total	Credit s	S		
CE 532	Soil Structure Interaction	3	0	0	3	3	7,5		
CE 562	Computer Application in Civil Engineering	3	0	0	3	3	7,5		
CE 548	Intermediate Structural Dynamics	3	0	0	3	3	7,5		
CE 533	Soil Improvement Techniques	3	0	0	3	3	7,5		
CE 587	Masonry Structures	3	0	0	3	3	7,5		
CE 591	Advanced Structural Analysis	3	0	0	3	3	7,5		
CE 538	Composite Materials	3	0	0	3	3	7,5		
CE 547	Supplementary Cementing Materials	3	0	0	3	3	7,5		
CE 540	Advanced Materials Science	3	0	0	3	3	7,5		
CE 543	Advanced Concrete Technology	3	0	0	3	3	7,5		
CE 544	Materials Testing and Measurements	3	0	0	3	3	7,5		
CE 584	Admixtures for Concrete	3	0	0	3	3	7,5		

_			•					•	
CE 549	Special Concretes	3	0	0	3	3	7,5		
CE 473	River Hydraulic	3	0	0	3	3	7,5		
CE 526	Water Resources Engineering	3	0	0	3	3	7.5		
CE 483	Water Supply System	3	0	0	3	3	7.5		
CE 523	Waste Water Tratment Plants	3	0	0	3	3	7.5		
CE 476	Hydraulic Structures I	3	0	0	3	3	7.5		
CE 477	Hydraulic Structures II	3	0	0	3	3	7.5		
		Weekly	Course Distri	bution		Epoka	ECT S		
	Electives Courses	Weekly Theor	Course Distri	bution Lab.	Total	Credit			
CE 435	Electives Courses Reinforce Concrete Structure	Theor			Total 4	-			
	Reinforce Concrete	Theor	Pract.	Lab.		Credit s	S		
435 ARC	Reinforce Concrete Structure Landscape Perspectives	Theor y 2	Pract.	Lab.	4	Credit s	7,5		
435 ARC H 451 CE	Reinforce Concrete Structure Landscape Perspectives in DRM & FS	Theor y 2	Pract. 2 0	Lab. 0	4	Credit s 3	7,5 7,5		
435 ARC H 451 CE 455 CE	Reinforce Concrete Structure Landscape Perspectives in DRM & FS River Engineering Advanced Construction	Theor y 2 2 2	Pract. 2 0 2	Lab. 0 2 0	4 4	Credit s 3	7,5 7,5 7,5		

3. Water Resources Profile Curricula:

COUR	SES	Course	Compulsory	Weekly	Course I	Distributi	on	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 423	Project Planning	В	Compulsory	2	2	0	4	3	7.5
CE 435	Reinforced Concrete Structures	С	Compulsory	2	2	0	4	3	7.5
CE 452	Statistical Techniques in Hydrology	В	Compulsory	2	2	0	4	3	7.5
CE	Technical Elective	В	Elective	3	0	0	3	3	7.5
Semest	ral Total		1	9	6	0	15	12	30
Second	d Semester								
COURS		Course	Compulsory	Weekly	Course I	Distributi	on	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	Leib
CE 442	Advanced Numerical Methods	E	Compulsory	3	0	0	3	3	7.5
CE 454	Advanced Construction Materials	С	Compulsory	2	0	2	4	3	7.5
CE 463	Fundamentals of River Engineering	В	Compulsory	2	2	0	4	3	7.5
	Elective	D	Elective	3	0	0	3	3	7.5
Semest	ral Total	1		10	2	2	14	12	30
SECO	ND YEAR								
Third S	Semester								
COUR	SES	Course	Compulsory	Weekly Course Distribution			Epoka	ECTS	
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 503	Research Methods	A	Compulsory	3	0	0	3	3	7.5
CE	Technical Elective	В	Elective	3	0	0	3	3	7.5
CE 507	Supervised Independent Study and Research	В	Compulsory	4	2	2	8	6	15
Semest	ral Total			10	2	2	14	12	30
Fourth	h Semester								
COUR	SES	Course	Compulsory	Weekly	Course I	Distribution	on	Epoka	ECTS
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	1
CE 500	Master Thesis	F	Compulsory	0	0	0	0	0	30
	ral Total	I	I	0	0	0	0	0	30
		l	I .	i .	1	1		<u> </u>	L

	B- Type Electives	Weekly	Course Distrib	ution		Epoka	ECTS
		Theory	Pract.	Lab.	Total	Credits	
CE 473	River Hydraulic						
CE 526	Water Resources Engineering	3	0	0	3	3	7.5
CE 483	Water Supply System	3	0	0	3	3	7.5
CE 523	Waste Water Tratment Plants	3	0	0	3	3	7.5
CE 476	Hydraulic Structures I	3	0	0	3	3	7.5
CE 477	Hydraulic Structures II	3	0	0	3	3	7.5
CE 451	Groundwater Engineering	3	0	0	3	3	7.5
CE 520	Modeling in Hydrology	3	0	0	3	3	7.5
CE 525	Computational Fluid Dynamics	3	0	0	3	3	7.5
		Weekly	Course Distrib	ution	1	Epoka	ECTS
	Electives Courses	Theory	Pract.	Lab.	Total	Credits	
CE 435	Reinforce Concrete Structure	2	2	0	4	3	7,5
ARCH 451	Landscape Perspectives in DRM & FS	2	0	2	4	3	7,5
CE 455	River Engineering	2	2	0	4	3	7,5
CE 458	Advanced Construction Materials	2	0	2	4	3	7,5
CE 484	Earthquake Disaster Mitigation	3	0	0	3	3	7,5
CEN 436	Introduction to Remote Sensing for Earth Observation	3	0	0	3	3	7,5

4. Construction Materials Profile Curricula:

FIRST	FIRST YEAR								
First Semester									
COURSES		Course	Course Compulsory V		Course I	n	Epoka	ECTS	
Code	Course Name	Type	/Elective	Theory	Pract.	Lab.	Total	Credits	
CE 423	Project Planning	С	Compulsory	2	2	0	4	3	7.5
CE 435	Reinforced Concrete Structures	В	Compulsory	2	2	0	4	3	7.5

3 15 n Total	3 3 12	7.5 7.5 30
n Total	_	
n Total	12	30
Total		
Total		
Total	T 1	FOTO
	Epoka	ECTS
2	Credits	
3	3	7.5
4	3	7.5
4	3	7.5
3	3	7.5
14	12	30
n	Epoka	ECTS
Total	Credits	1
3	3	7.5
3	3	7.5
8	6	15
14	12	30
•	•	•
n	Epoka	ECTS
Total	Credits	1
0	0	30
0	0	+
		-
ECTS		+
1		+
7,5		
7,5		
7,5		
7,5		
7,5		
	•	
	3 14 Total 3 8 14 Total 0 0 ECTS 7,5 7,5 7,5	3 3 14 12 n Epoka Total Credits 3 3 8 6 14 12 n Epoka Total Credits 0 0 0 ECTS 7,5

CE 538	Composite Materials	3	0	0	3	3	7,5	
CE 547	Supplementary Cementing Materials	3	0	0	3	3	7,5	
CE 540	Advanced Materials Science	3	0	0	3	3	7,5	
CE 543	Advanced Concrete Technology	3	0	0	3	3	7,5	
CE 544	Materials Testing and Measurements	3	0	0	3	3	7,5	
CE 584	Admixtures for Concrete	3	0	0	3	3	7,5	
CE 549	Special Concretes	3	0	0	3	3	7,5	
		Weekly C	Course Distributi	ion		Epoka	ECTS	
	C- Type Electives	Theory	Pract.	Lab.	Total	Credits		
CE	Legal Aspects In	3	0	0	3	3	7,5	
413	Construction Works							
CE 417	Construction Site Techniques	3	0	0	3	3	7,5	
CE 416	Risk management in Construction	2	2	0	3	3	7,5	
CE 419	Building Construction Estimating	3	0	0	3	3	7,5	
CE 449	Economics of Sustainability	3	0	0	3	3	7,5	
CE 443	Construction Contracts	3	0	0	3	3	7,5	
CE 478	Hydraulic Structures	3	0	0	3	3	7,5	
CE 484	Fundamentals of River Engineering	3	0	0	3	3	7,5	
CE 452	Statistical Techniques In Hydrology	3	0	0	3	3	7,5	
CE 451	Groundwater Engineering	3	0	0	3	3	7,5	
CE 526	Water Resources Engineering	3	0	0	3	3	7,5	
CE 520	Modeling In Hydrology	3	0	0	3	3	7,5	
CE 437	Computational Fluid Dynamics	3	0	0	3	3	7.5	
CE 464	Intermediate Fluid Mechanics	3	0	0	3	3	7.5	
		Weekly C	Course Distribut	ion	•	Epoka	ECTS	
	Electives Courses	Theory	Pract.	Lab.	Total	Credits		
CE 435	Reinforce Concrete Structure	2	2	0	4	3	7,5	
ARCH 451	Landscape Perspectives in DRM & FS	2	0	2	4	3	7,5	
	•	š	•	· ·			i	•

CE	River Engineering	2	2	0	4	3	7,5	
455								
CE	Advanced Construction	2	0	2	4	3	7,5	
458	Materials							
CE	Earthquake Disaster	3	0	0	3	3	7,5	
484	Mitigation							
CEN	Introduction to Remote	3	0	0	3	3	7,5	
436	Sensing for Earth							
	Observation							

5. Professional Master Curricula

			E	irst Semester	•				
COURSE	S			ist semester	Weekly Cours	e Distribution		Epoka	
Code	Course Name	Course Type	Compulsory /Elective	Theory	Pract.	Lab.	Total	Credits	ECTS
CE 423	Project Planning	В	Compulsory	3	0	0	3	3	7.5
CE 435	Reinforced Concrete Structures	В	Compulsory	2	0	0	2	2	7.5
				3	0	U	3	3	7.3
	Technical Elective	B/C	Elective	3	0	0	3	3	7.5
	Technical Elective	B/C	Elective	3	0	0	3	3	7.5
Semestral '	Total			12	0	0	12	12	30
Schesuar	Total			12	0	0	12	12	30
			Se	cond Semest	er			ı	
COURSE	S	· Course Type	Compulsory		Weekly Cours	e Distribution		Epoka	
Code	Course Name	Compe Type	/Elective	Theory	Pract.	Lab.	Total	Credits	ECTS
CE 420	Term Project	B/F	Compulsory	3	0	0	3	3	7.5
CE 454	Advanced Construction Materials	В	Compulsory	3	U	U	3	3	7.5
				3	0	0	3	3	7.5
	Technical Elective	B/C	Elective	3	0	0	3	3	7.5
	Elective	Е	Elective	3	0	0	3	3	7.5
G	T-1				0		12	12	
Semestral '	Total			12	0	0	12	12	30
			Weekly Course	Distribution		Epoka	ECTS		
	Electives Courses	Theory	Pract.	Lab.	Total	Credits			
CE 435	Reinforce Concrete Structure	2	2	0	4	3	7,5		
ARCH 451	Landscape Perspectives in DRM & FS	2	0	2	4	3	7,5		
CE 455	River Engineering	2	2	0	4	3	7,5		
CE 458	Advanced Construction Materials	2	0	2	4	3	7,5		
CE 484	Earthquake Disaster Mitigation	3	0	0	3	3	7,5		
CEN 436	Introduction to Remote Sensing for Earth Observation	3	0	0	3	3	7,5		

6. Professional Master in "Disaster Risk Management and Fire Safety in Civil Engineering" Curricula:

COURSI	ES	Course	Compulsory	Weekly	Course	Distrib	ution	Epok	ECT
Code	Course Name	Туре	/Elective	Theor y	Pract .	Lab	Tota 1	a credit s	S
CE 431	Project Planning, Management and Coordination	В	Compulsory	2	2	0	4	3	7.5
CE 447	Structural Fire Safety	В	Compulsory	3	0	0	3	3	7.5
CE 473	Flood Risk Assessment	В	Compulsory	3	0	0	3	3	7.5
	Elective	C	Elective	3	0	0	3	3	7.5
Semestra	l Total	•		11	2	0	13	12	30
Second	Semester								
COURSI		Course	Compulsory	Weekly	Course	Dietrik	uition	Epok	ECT
Code	Course Name	Type	/Elective	Theor	Pract	Lab	Tota	a	S
Code	Course Name	у				Lau	1	credit s	
CE 456	Risk Analysis in Decision- making Process	В	Compulsory	2	2	0	4	3	7.5
ARCH 428	Evaquation Calculation Modeling	В	Compulsory	2	0	2	4	3	7.5
CE 476	Supervised Independent Study and practice	Е	Compulsory	1	2	0	3	2	7.5
	Elective	D	Elective	3	0	0	3	3	7.5
Semestra	l Total	<u> </u>	T	8	4	2	14	11	30
List of F	lective Courses								
Code	Course Name	Course	Compulsory	Weekly Course Distribution			Epok	ECT	
		Туре	/Elective	Theor y	Pract .	Lab	Tota 1	a credit s	S
CE 435	Reinforced Concrete Structures	C	Elective	2	2	0	4	3	7.5
ARCH 451	Landscape Perspectives in DRM & FS	D	Elective	2	0	2	4	3	7.5
CE 459	Durability of Concrete	С	Elective	2	0	2	4	3	7.5
CE 455	River Engineering	С	Elective	2	2	0	4	3	7.5
CE 458	Advanced Construction Materials	D	Elective	2	0	2	4	3	7.5
CE 484	Earthquake Disaster Mitigation	С	Elective	3	0	0	3	3	7.5
CEN 436	Introduction to Remote Sensing for Earth Observation	D	Elective	3	0	0	3	3	7.5

7. PhD Curricula:

Year I - First Semester			P	C	ECTS
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
Total:		12	0	12	30

Year I - Second Semester			P	С	ECTS
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
CE 8xx	ELECTIVE COURSE	3	0	3	7.5
Total:		12	0	12	30

Year II+III		T	P	C	ECTS
CE 800	PhD Thesis	0	0	0	120
Total:		0	0	0	120

D. Teaching, Learning, Assessment & Research

Undergraduate Students' List of Graduation Project

- 1. Aldo Hysa," Structural Analysis of a 3-storey building using SAP2000" MSc. Armando Demaj.
- 2. Ana Bllama "Structural Analysis of Reinforced Concrete Residential Buildings in Albania: A Case Study dor 1982 Constructions", MSc. Marsed Leti.
- 3. Devi Delimeta, "Strengthening and Retrofitting of Unreinforced Masonry (URM)". Dr. Enea Mustafaraj
- 4. Drita Mehmeti," Structural Analysis of a 3-storey building using SAP2000" MSc. Armando Demaj.
- 5. Enias Papa "Detailed Quantity Take-off and Cost Estimating", Dr. Julinda Keci
- 6. Eraldo Braka," Retrofitting of old Historical Structures" Dr. Enea Mustafaraj
- 7. Kevin Illiu," Analysis of a Reinforced Masonry" Dr. Enea Mustafaraj
- 8. Kiara Marku, "Structural Analysis of a 3-storey building using SAP2000", MSc. Armando Demaj.
- 9. Kleo Lila, "Structural Analysis of a 3-storey building using SAP2000", MSc. Armando Demaj.
- 10. Marko Kajo "Quantity Take-off and Time Estimating for a Construction Project", Dr. Julinda Keci
- 11. Neilda Dulemati "Earthquake Behavior of Buildings", Assoc. Prof. Dr. Huseyin Bilgin

Graduate Students' List of Theses

- 1. Xhesila Myzyri, Seismic Performance Assessment of a Typical Masonry Buildings from Albanian Practice, Assoc. Prof. Dr. Hüseyin Bilgin
- 2. Arsela Vogli, "Nonlinear Statics and Dynamic Analyses of RC Buildings-Comparison of Various Modelling Approaches", Assoc. Prof. Dr. Hüseyin Bilgin
- 3. Elsa Belba, "Wastewater Treatment in Rural Areas Not Included in "Water Supply and Sewerage Companies", Assoc. Prof. Dr. Mirjam Ndini
- 4. Anxhela Dulla, "REPLACEMENT OF A REINFORCED CONCRETE SLAB WITH A

LIGHTWEIGHT COBIAX SYSTEM AND THE APPLICATION OF COBIAX SLABS IN ALBANIA", Dr. Enea Mustafaraj

- 5. Elga Senka, "Strengthening and Repair of Reinforced Concrete Structures", Dr. Enea Mustafaraj
- 6. Klajdi Dani, "EROSION ASSESMENT, QUANTIFICATION AND PROTECTION MEASURES: SHËNGJIN BAY", Assoc. Prof. Dr. Mirjam Ndini
- 7. Margarita Dajko," EVALUATION OF SIESMIC POUNDING BETWEEN TWO ADJACENT REINFORCED CONCRETE BUILDINGS FROM ALBANIAN PRACTICE", Assoc. Prof. Dr. Huseyin Bilgin
- 8. Mirjeta Blloshmi, "1D-2D FLOOD MODELING FOR REHABILITATION PROPOSITIONS OF FARKA STREAM USING HEC-RAS 5.0.7 AND ARG-GIS10.6.1", Assoc. Prof. Dr. Mirjam Ndini

Research Areas and Research Groups

Research Area: Structural/Earthquake Engineering

The goal of our research group in structural/earthquake engineering is to improve the seismic resiliency of societies through improved engineering and management tools for critical infrastructure systems including reinforced concrete, masonry as well as steel structures. Graduates courses are available in static/dynamic analysis and structural design theory.

Failures of structures during severe earthquakes are responsible for losses and casualties in seismic regions around the world including our region. Most of the structural failures can be attributed to poorly detailed/constructed components of the buildings systems (e.g. columns, beam-column joints, masonry walls). Recent research has proven the effectiveness of various innovative strengthening techniques at enhancing the performance of such substandard components, it is still necessary to develop design guidelines that lead to more cost-effective solutions.

Potential MSc/PhD topics include assessment, retrofit/strengthening of Reinforced Concrete, steel and masonry structures as follows:

- Use of Fiber Reinforced Polymers (FRP) for strengthening,
- Use of hybrid strengthening solutions for rehabilitation,
- Testing techniques for seismic performance assessment,
- Seismic analysis and design of buildings equipped with energy dissipative devices,
- Vulnerability assessment and upgrading of existing infrastructure,
- Fragility based assessment of existing infrastructure,

- Performance based evaluation of the existing infrastructure,

Another research area is related with the stability and dynamics of the historical masonry buildings constructed during the Post-Byzantine period on massive Roman vaulted structures. Using the methods of Heyman's limit analysis approach, load bearing mechanism and collapse analysis of these structures will be investigated. Based on the findings, seismic safety of the theses monumental structures will be explored.

Team Memebers: Assoc. Prof. Hüseyin Bilgin, PhD. Enea Mustafaraj, PhD. Erion Luga. PhD (c) Mario Hysenlliu, PhD (c) Marsed Leti, Asisst. MSc. Armando Demaj.

Research area: Water Resources Engineering

This research area deals with research and practical applications of hydrology and hydraulics as an integral part of the civil engineering. Water is the key element and a valuable resource for human development which depends on the availability of water resources. It is of great importance a comprehensive understanding of the fundamental force of water to be capable to deal with its consequences—such as flooding—manage the increasing demands for water, managing the water in a sustainable way, and utilize hydraulic energy. Due to climate change impact, population growth and increasing water demand, the importance of research on water issues is going to increase in the future. Hydrology and hydraulics are two of fundamental sciences providing the basic knowledge for the development and controlling of water resources.

Hydraulic structures for flow controls are important elements of application and their designs, involves the interaction between structure and flow. Engineering studies include the analysis of flows, the ways in which the water regime and the flow pattern are affected by the structure and the environment responds to these changes.

The most prominent hydraulic structures are dams for water storage. They are indispensable structures for the watershed-based development. The planning, design, construction and operation of dams are vital parts of a variety of water uses: water supply for domestic, irrigation and industrial uses; protection of life and property from flooding; hydro-electric energy generation and storage of large amounts of energy for economic growth, etc. But all these uses involve systems of other structures as well and all these elements comprise structural analysis, materials science and the technology of structures. The types of structures and their design have evolved, and new challenges come from applying new construction technologies and from the application of value engineering and probabilistic design to provide economically balanced solutions.

The research of hydraulic engineering group will contribute to these challenges not just to give an understanding of the processes but recommending effective measures for practical solutions.

Team Members: Assoc. Prof. Miriam Ndini, Assoc. Prof. Hüseyin Bilgin, PhD Enea Mustafaraj, PhD Erion Luga, PhD Julinda Keci.

3. Research Area: Sustainability in Civil Engineering

This research area deals with the contribution of civil engineering and related disciplines in the creation of a sustainable living environment. Sustainability in civil engineering means, performing construction and management activities without any reduction of resources or causing any harmful effect to the environment. In this context the Department of Civil Engineering at Epoka University is dedicated to work and contribute for building a better future for the next generations by conducting research on:

Assessing the structural integrity of civil engineering structures and develop retrofitting methods and techniques for a more secure built environment.

Old buildings, bridges or historical monuments are part of people's daily life. In many countries hundreds of casualties are reported because of lack of assessment and maintenance of these structures. For that reason, they need to be assessed for structural integrity and retrofitted in case of improper conditions.

Solutions related to the reuse of underused facilities or reuse of structural members of these facilities.

In Albania there are many industrial sites or buildings which for the moment are underused. On the other hand, many infrastructure projects cannot be implemented, or people cannot afford the cost of brand-new houses. These underused facilities may be totally or partially reused to construct low budget infrastructure or houses.

• Recycling of industrial and demolition wastes in the production of construction materials.

The production of many construction materials is responsible for the release of high amounts of wastes and consumption of unbelievably large amounts of natural resources. On the other hand, industrial by products such as slag, fly ash, silica fume etc. or demolition wastes are becoming serious problems for occupying large areas of land and causing serious environmental problems, for that reason the reuse and recycling of these wastes has become an emergency for many countries including Albania. So, by developing efficient and sustainable techniques we aim to offer to our society a cleaner and more livable environment.

Development of innovative and high-performance materials for safer and more comfortable structures.

Traditional materials used in the construction offer many advantages to the construction industry, but beside these advantages there are also some deficiencies of these materials which

need to be improved or sometimes even produce innovative materials to withstand better their conditions of service. The development of innovative and high-performance materials for safer and more comfortable environment rises as a necessity for a more sustainable living.

• Integration of sustainability principles in the design and management of construction projects.

Construction projects involve activities such as: use of materials from various sources, machineries, demolition of existing structures, use of green fields, cutting down of trees etc. All of these processes affect the environment in different ways like generation of waste materials, emissions from vehicles, machineries, noise pollution due to use of heavy vehicles and construction machineries, consumption of natural resources etc. Sustainability assessment of construction projects is essential to the fact that it does not create any harmful effects on the living ecosystem while optimizing the cost of construction. In order to ensure the availability of resources for the future generations and build affordable and manageable structures, it is very important to integrate the sustainability principles in the design and management of construction projects.

Team Members: Assoc. Prof. Miriam Ndini, Assoc. Prof. Hüseyin Bilgin, PhD Enea Mustafaraj, PhD Erion Luga, PhD Julinda Keci, PhD (c) Marsed Leti

List of Publications

No	Name Surname	Scientific Publications and Academic Activities
1	Dr. Erion Luga	The Influence of Oxide Content on the Properties of Fly Ash/Slag Geopolymer Mortars Activated with NaOH
2	Dr. Erion Luga	Effects of Material Properties on Seismic Vulnerability Assessment of Unreinforced Masonry Buildings.
3	Dr. Erion Luga	The possibility of vermiculite, sunflower stalk and wheat stalk using for thermal insulation material production
4	Dr. Erion Luga	Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration
5	Dr. Erion Luga	Strength properties of slag/fly ash blends activated with sodium metasilicate and sodium hydroxide+ silica fume
6	Dr. Erion Luga	Optimization of heat cured fly ash/slag blend geopolymer mortars designed by "Combined Design" method: Part 1
7	Dr. Erion Luga	Strength properties of slag/fly ash blends activated with sodium metasilicate
8	Dr. Erion Luga	Effects of Material Properties on Seismic Vulnerability Assessment of Unreinforced Masonry Buildings
9	Assoc. Prof. Dr. Hüseyin Bilgin	Comparison of near and far-fault ground motion effects on low and mid-rise masonry buildings

10	Assoc. Prof. Dr. Hüseyin Bilgin	A Simple Approach for the Design of Ductile Earthquake-Resisting Frame Structures Counting for P-Delta Effect.
11	Assoc. Prof. Dr. Hüseyin Bilgin	The use of macro element approach for the seismic risk assessment of brick masonry buildings
12	Assoc. Prof. Dr. Hüseyin Bilgin	Re-evaluation of building damages during recent earthquakes in Turkey
13	Assoc. Prof. Dr. Hüseyin Bilgin	Structural damages of L'Aquila (Italy) earthquake.
14	Assoc. Prof. Dr. Hüseyin Bilgin	Fragility-based Assessment of Public Buildings in Turkey
15	Assoc. Prof. Dr. Hüseyin Bilgin	Seismic Capacity Evaluation of School Buildings in Turkey
16	Assoc. Prof. Dr. Hüseyin Bilgin	Earthquake performance assessment of low and mid-rise buildings: Emphasis on URM buildings in Albania
17	Assoc. Prof. Dr. Hüseyin Bilgin	Generation of Fragility Curves for Typical RC Health Care Facilities: Emphasis on Hospitals in Turkey
18	Assoc. Prof. Dr. Hüseyin Bilgin	Predicting the seismic performance of typical R/C healthcare facilities: emphasis on hospitals
19	Assoc. Prof. Dr. Hüseyin Bilgin	Comparison of near and far-fault ground motion effects on low and mid-rise masonry buildings

20	Dr. Enea Mustafaraj	Polypropylene as a Retrofitting Material for Shear Walls.
21	Dr. Enea Mustafaraj	Effects of Material Properties on Seismic Vulnerability Assessment of URM Buildings.
22	Dr. Enea Mustafaraj	Structural Assessment of Mehmed Pasha Hammam in Prizren, Kosovo
23	Dr. Julinda Keci	Disaster risk management in the Western Balkans: a comprehensive approach on technical and economic perspectives

Participation of Academic Staff in Academic Events

1. Dr. Julinda Keçi, Lecturer of Civil Engineering Department, participated in the two-day meeting organized during the 16th and 17th of January in Oslo, Norway in the framework of COST Action: CA17125 Public Value Capture of Increasing Property Values. The main aim and objective of this Action is the development of a common framework for value capturing and the provision of innovative tools for public value capture based on comparative analysis to optimize the allocation of development costs and benefits as well as to disencumber the public budget. There are 33 Countries members in this Cost Action.

During the first day CA organized the Management Committee Meeting and the Working Groups Meeting. Ms. Keçi is MC members and part of the second Working Group of CA 17125. There was discussed mainly the proceed of the research on the main goal of the project, while specifying the cases of each participating country. The following MC meeting and project activity is the International Conference organized in Ljubjana, Slovenia on 18th of June 2020; "International Conference on Public Value Capture of Increasing Property Values: Common Framework – Allocation of Costs And Benefits – Innovative Tools". Ms. Keçi initiated a group research study regarding the PVC framework, challenges and recommendations on Western Balkan Countries, which will be presented in the Conference and include participants from the mentioned countries as well.

Projects

E. Support, Resources & Representation

1. A 5.6 magnitude (Richter Scale) earthquake has shaken central Albania on September 21, 2019 at 04:04 PM, injuring lots of people and damaging many buildings. It was reported by the United States Geological Survey [USGS] that the earthquake struck along Albania's central coast near the port city of Durrës, about 35 kilometers west of the capital Tirana. On Friday, Sptember 27, 2019, the academic staff of the Civil Engineering Department of Epoka University conducted a rapid damage assessment in the city of Durres and Kavaja. The objective of the rapid assessment is to quickly establish the usability of buildings and associated infrastructure where functions may be compromised by a hazard event such as earthquake, flood, landslide, etc.,

In collaboration with the municipality representatives, the rapid assessment was conducted for all damaged buildings.

Upon the verifications done, the team reported no structural damages in all the buildings inspected. Mostly, partition walls and other non-structural elements were damaged. All the results were reflected in the corresponding forms and submitted to the respective municipalities.

Participation in Academic Events

1. Dr. Enea Mustafaraj participated in "**Regional Seismic Working Group Meeting**" of IPA DRAM held in Podgorica, Montenegro on October 7 – 9, 2019.

The main aim of the workshop was to consolidate the regional working group on seismic risk that was set during the 2^{nd} IPA Dram regional Workshop on seismic risk this by:

- increasing the level of expertise that contributes to the regional working group by expanding the partnership and the network of experts in the Balkan Region
- refocusing the goals and objectives of the working group starting from the gap analysis that was finalized after the 2nd IPA DRAM regional workshop.
- Discussing a possible expansion of the working group in a multi-hazard context to support the region in a more comprehensive manner in DRM policies.

The regional workshop gathered participants from all IPA DRAM Partner Countries.

2. On 7-9 November 2019, Dr. Enea Mustafaraj attended "International Conference on Critical Thinking in Sustainable Rehabilitation and Risk Management of the Built Environment" - CRIT-RE-BUILT. He presented his latest research on structural assessment of historical structures "Structural Assessment of Mehmed Pasha Hammam in Prizren, Kosovo" conducted with his master student, Jetmir Morina.

The aim of the conference was to bring together the critical thinking of academics, researchers, designer engineers, architects, urban planners, ecologists, developers and building contractors, experts on risk assessment and management, practitioners of all areas

of Civil & Environmental Engineering, Architecture and other related areas, representatives of central and local administration, representatives of national heritage conservation authority, promoters in the sustainable rehabilitation and risk management of the built environment.

Research Projects

(Write a paragraph for each project applied and/ or awarded highlighting the area of the project, members, targeted group, grant used, expected outcomes). Associate the text with at least one picture.

Industry Projects

(Write a paragraph for each project highlighting the area of the project, members, targeted group, grant used, expected outcomes). Associate the text with at least one picture.

Community Projects

(Write a paragraph for each project highlighting the area of the project, members, targeted group, grant used, expected outcomes). Associate the text with at least one picture.

Student Club Projects

1. On November 11, 2019, in the framework of Introduction to Construction Materials course, the second-year civil engineering students, conducted a site trip in Gjirokastra. The lecturers of department of Civil Engineering, Dr. Erion Luga and Dr. Enea Mustafaraj shared with the students some information about the traditional construction types of masonry in Gjirokastra, building stones as well as building technique.

The students also visited the fortress, the old bazaar and some typical houses, where they made a visual assessment of structural deficiencies of the buildings.

The old town is a UNESCO World Heritage Site, described as "a rare example of a well-preserved Ottoman town, built by farmers of large estate".

It was a very fruitful visit and it will be followed by other activities in the upcoming months.

Student Best Success Stories

(Choose up to five best student success stories and write one to two paragraphs for each. Associate the text with a picture of the student)

Office Holders

The department would like to thank the following for their valuable contribution to teaching, administration and management over the past year:

Assoc. Prof. Dr. Miriam Ndini

Assoc. Prof. Dr. Hűseyin Bilgin

Dr. Erion Luga

Dr. Enea Mustafaraj

Dr. Julinda Keçi

MSc. Armando Demaj

MSc. Marsed Leti

Department Coordinator Amelia Bullari

Acknowledgements

In addition to the Office Holders listed above, the department would like to thank the following for their collaboration to make this department offer all the facilities needed for the students.

Department of Civil Engineering

Epoka University Rr. Tirane- Rinas, Km. 12 , 1039, Tirane/Albania Phone: +355 4 2232 086

Fax: +355 4 2222 117 Email: info@epoka.edu.al